SMALL MODULAR REACTORS FOR LOW-CARBON ELECTRIC AIRCRAFT

1%

1 Nuclear Fuel Cycle

Uranium ore is extracted and processed into fuel rods for use in fission reactors

1a Mining and Milling

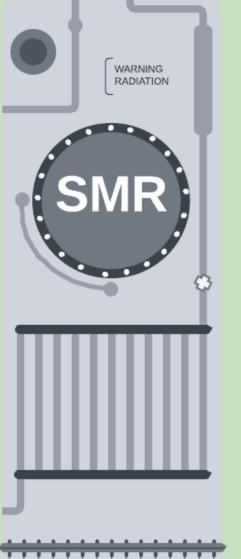
Uranium is extracted from the crust and converted from raw ore into a concentrate

1b Conversion

Concentrated "yellow cake" is processed and reacted with fluorine

Enirchment

Conversion product is concentrated to contain more fissionable components



8 - 14%

transmission lines

Relative climate impacts

1d Fuel Fabrication

Enriched uranium is converted into fuel suitable for reactors

Nuclear Waste

Waste from nuclear reactors must be diposed of or reporcessed

3 - 9%

2 Small Modular Reactor

Modular nuclear reactors produce low-emission electricity, and can be mass produced and deployed to meet energy needs

STRUCTURAL

BATTERY PACK

33%

44%

4 Airport Storage

On-site energy storage allows for operations during potential production downtime and changes in demand

5 Lithium-Air Battery Application

Structural lithium-air batteries on the aircraft provide energy-dense storage of electricity to propel commercial aircraft

POTENTIAL CLIMATE IMPACTS OF SMR

306.86

SMR powered electric aircraft compared to convential jet fuel (g CO2 eq/kWh energy delivered)