

R.E.C.O.V.E.R.

RAPID EVALUATION, COORDINATION, OBSERVATION, VERIFICATION, and Environmental Reporting

Presenting:

Lucy Paskoff

Eileen Duong

Absent:

Tristan Bourgade

Priscilla Pak

Advisor:
Anthony Linn

Advancing Aviation for Natural Disasters

- Aviation-Related System
- 1 Phase of Management of a Natural Disaster
- Onboarded by 2035

Flood Recovery

Motivation: Impact

Floods threaten people, communities, infrastructure, and economies

133 million Americans impacted by flooding in Spring 2024

\$2 Billion

Average Annual Cost of Flood Damage (FEMA)

Motivation: Looking Ahead

Increasing flood prevalence and frequency as a result of climate change.

"Moderate" Flooding

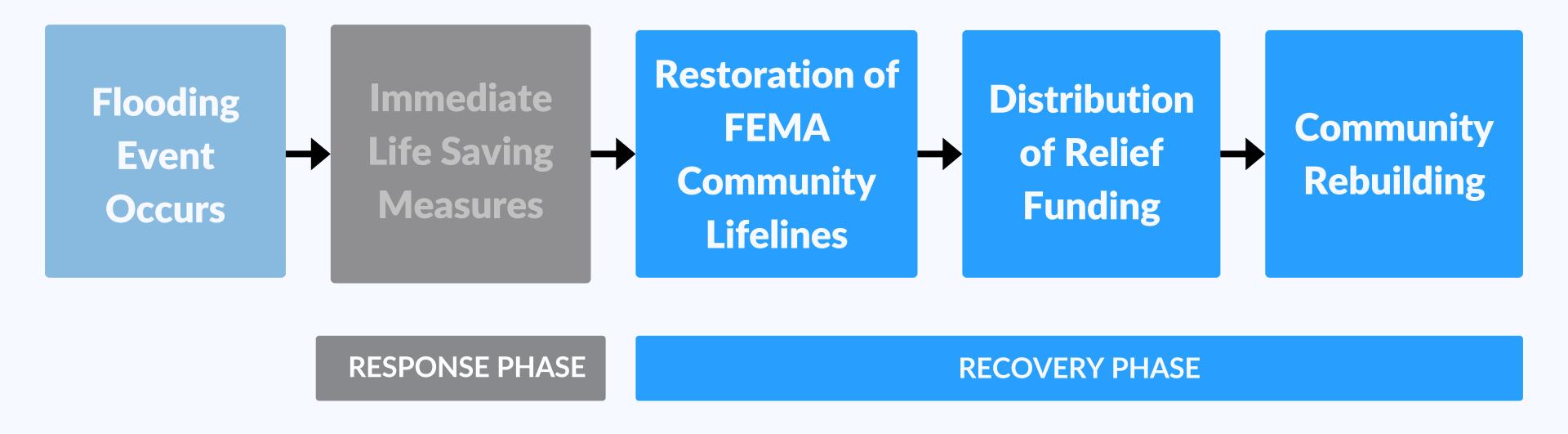
90%

of Natural Disasters
Involve Flooding

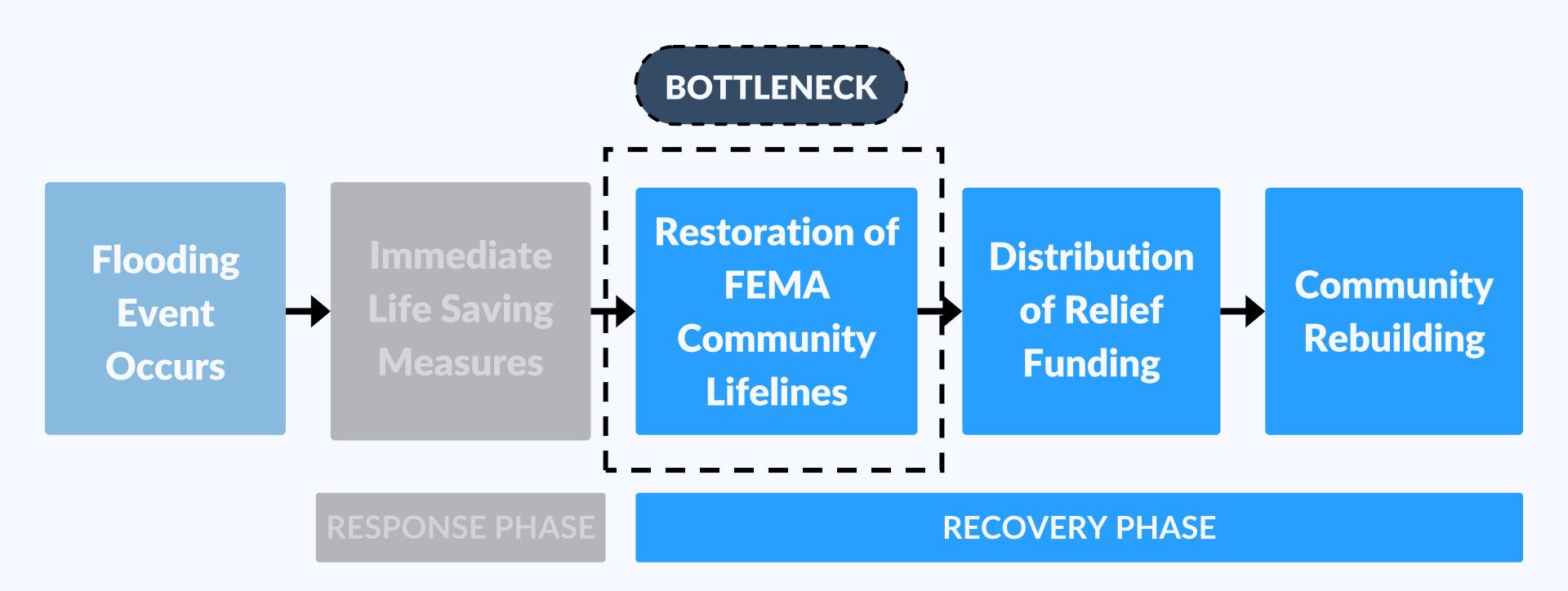
Significant Increase of Flood Risk

Next 30 Years

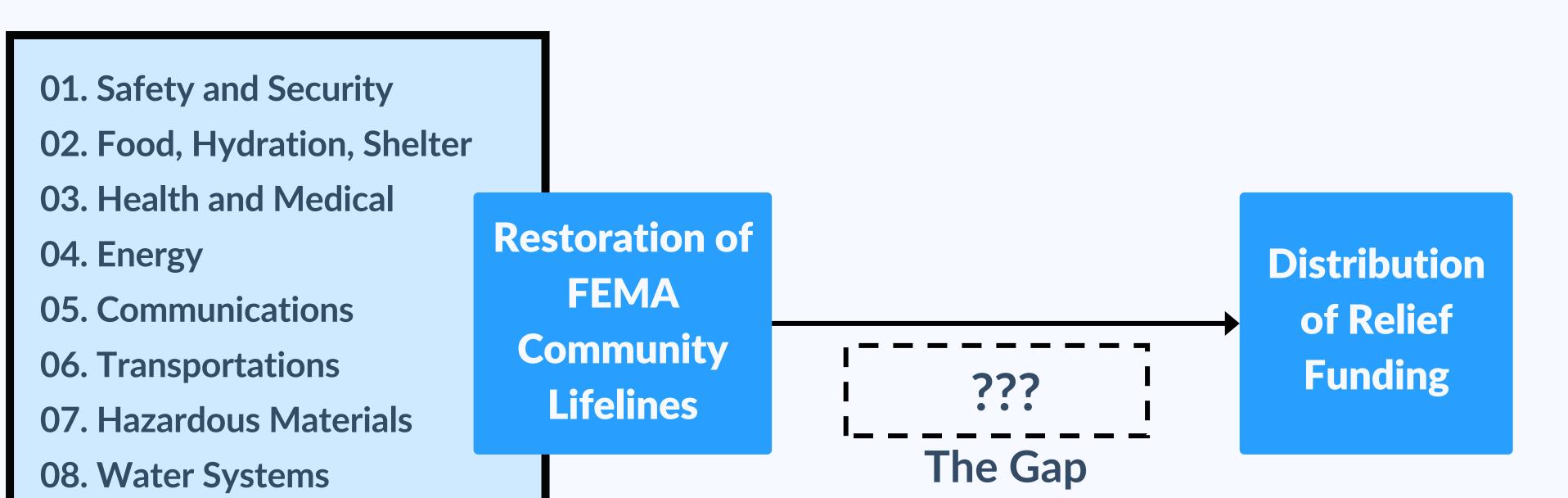
"Major" Flooding

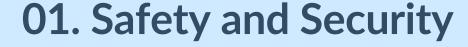

5XIncrease by 2050

10x


Increase by 2050

The Process


Typical series of events after a flood


The Process

Before Rebuilding

Before Rebuilding

02. Food, Hydration, Shelter

03. Health and Medical

04. Energy

05. Communications

06. Transportations

07. Hazardous Materials

08. Water Systems

Restoration of FEMA
Community
Lifelines

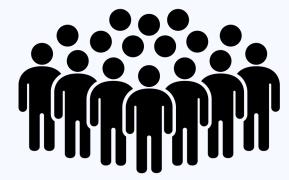
Distribution of Relief Funding

The Preliminary Assessment Process

		DATE				
				PART I - APPLICANT INF	ORMATION	
NAME OF LOCAL CONTACT			PUBLIC ENTITY	COUNTY		STATE
PHONE NO.			POPULATION	MILES OF ROADWAY		
			PART II - COST ESTIMATI	E SUMMARY (COMPLETE SITE	ESTIMATE BEFORE SUMMARIZING	BELOW)
CATE-GORY	NO. OF SITES	TVD	PE OF DAMAGE	COST ESTIMATE		
	140.0131123		PL OI DAINAGE	COSTESTIMATE	WORK COMPLETED	WORK TO BE COMPLETED
Α		DEBRIS REMOVAL				
В		EMERGENC	Y PROTECTIVE MEASURE			
С		ROADS AND BRIDGES				
D		WATER CONTROL FACILITIES				
Е		BUILDINGS & EQUIPMENT				
F		UTILITIES				
G		PARKS, REG	CREATIONAL, & OTHER			
			TOTAL	\$ -		
			PART III - DIS	A STER IMPACTS (LISE SERAI	RATE SHEETS IF NECESSARY)	•

Blank Preliminary Damage Assessment Source: Courtesy of Donald Grantham, FEMA

Currently done manually


01. Costly

02. Time Intensive

03. Labor Intensive

Our Solution: RECOVER

RECOVER: System Overview

- Heterogeneous drone swarm
- Transported in modified SUV
- Rapid detailed imaging for damage assessments
- Assesses floodwater quality

System Goals

Relieving strain on personnel

Reducing agencies' deployment costs and duration

Facilitating interagency collaboration

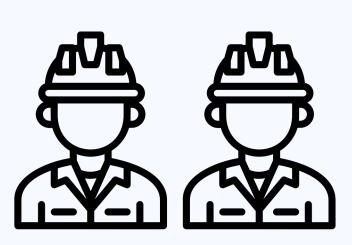
Enabling more impactful community assistance

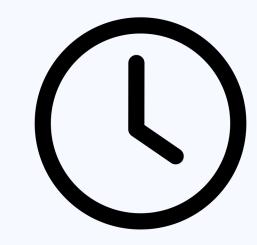
Concept of Operations

Rapid Evaluation

Coordination

Observation/ Verification



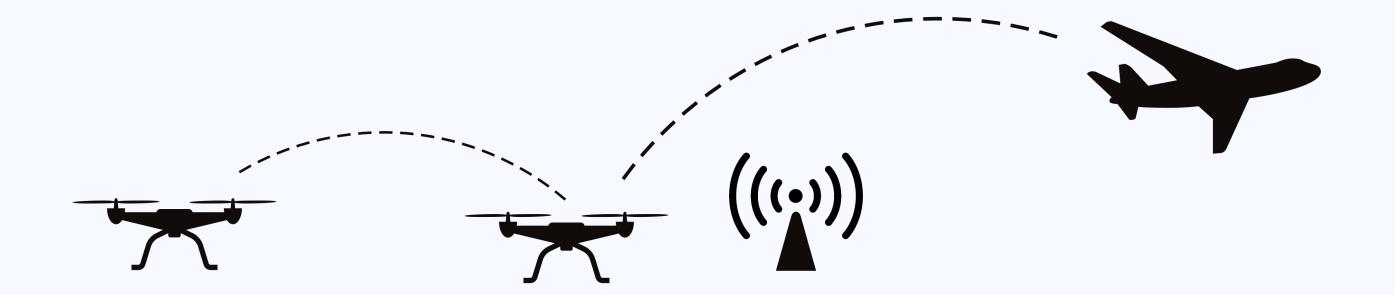


Rapid Evaluation

Expedite damage assessments with lean team and easily deployable system

Rapid Evaluation

Coordination



Observation/ Verification

Coordination

Manage multiple drones in swarm for efficient mission completion

Rapid Evaluation

Coordination

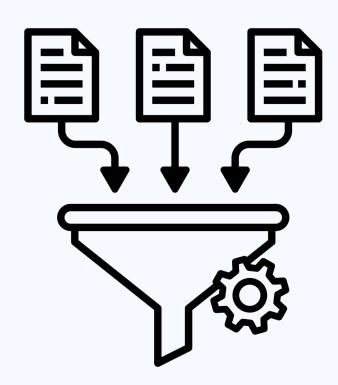
Observation/ Verification

Observation/Verification

Observe and verify real time data from drones

Allows for datainformed decision making Rapid Evaluation

Coordination



Observation/ Verification

Environmental Reporting

Auto-populate damage and environmental quality reports that can be accessed by multiple agencies

Observation/ Verification

System Hardware

Ground Control Station (GCS)

1-2 operators

Onboard computers

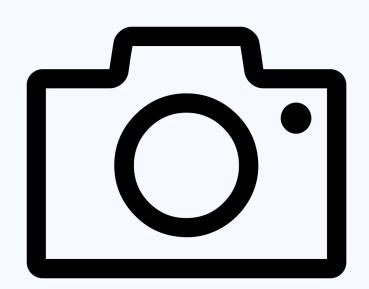
Loop-mediated isothermal (LAMP) testing

Water sample processing equipment

System power components

Communications infrastructure

System Hardware



Fixed-Wing Drone Layout

Vertical takeoff and landing (VTOL)

High resolution camera (Obstacle avoidance)

System Hardware

Hexacopter Layout

Floating buoy base

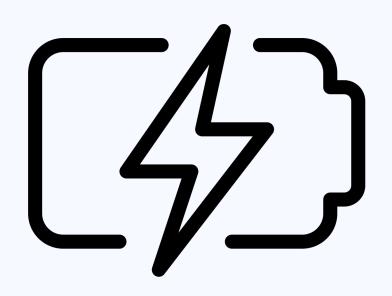
Cuvette-holding assembly

 NO_3

In-situ floodwater sensors:

- Temperature
- pH
- Turbidity
- Dissolved Oxygen
- Nitrates

Deployment Scenario


PRE-OPERATION

INTRA-OPERATION


Pre-Operation Planning

Pre-flight checks & regulatory compliance

Batteries charged & sensors calibrated

Algorithm training on past GIS data

Waypoint selection & route planning

INTRA-OPERATION

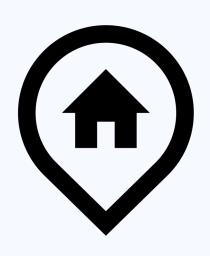
Ground Control System Preparation

Components and spares loaded into Ground Control System

PRE-OPERATION

INTRA-OPERATION


On-Site Readiness Checks


GCS driven to disaster site by operator pair

Verify no incident aircraft present

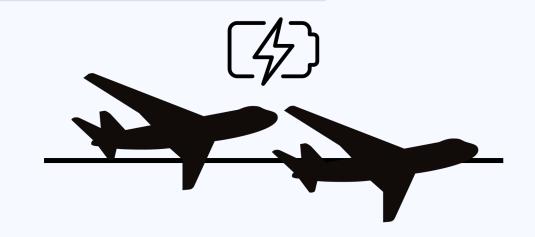
Perform system communications check

Designate location as "home base"

PRE-OPERATION

INTRA-OPERATION

Fixed-Wing Deployment


Onboard FC identifies objects of interest via CNN

Points of interest selected for additional monitoring

Initial flyover to take images of disaster site

2 Images & data sent to GCS to create 3D map

3 Drones return to home base (GCS) for battery swap

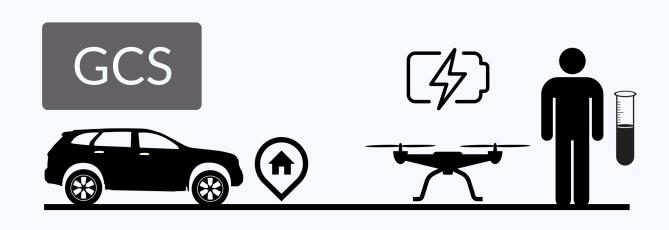
PRE-OPERATION

INTRA-OPERATION

POST-OPERATION

Additional high altitude deployments for monitoring as needed

Hexacopter Deployment: Multiple Passes


Images & water quality data transmitted to GCS

Navigate to designated points of interest

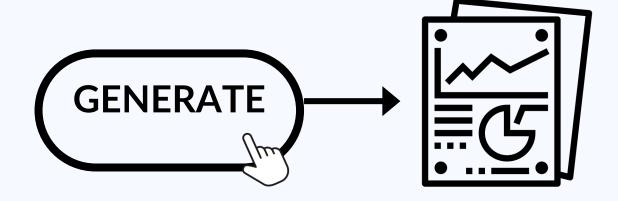
2 Collect water samples and capture close up images

Return to home base (GCS) for sample return & battery swap

PRE-OPERATION

INTRA-OPERATION

POST-OPERATION


Additional deployments at hotspots as needed, based on real time data

Intra-Operation: Data Reporting

Decision making for additional deployments

Appropriate agencies notified of areas requiring immediate attention

Data used to generate damage assessments

PRE-OPERATION

INTRA-OPERATION

Post-Operation: After Deployment

General system maintenance

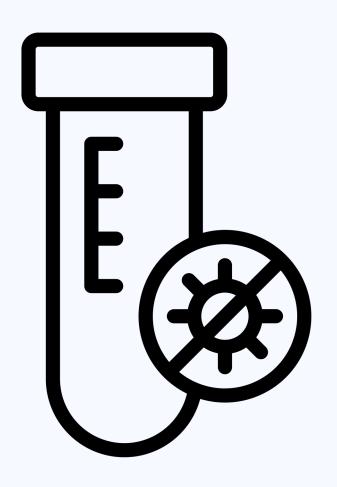
Further file processing and post-reporting for agencies

PRE-OPERATION

INTRA-OPERATION

Regulatory Considerations

Notice to Air Mission (NOTAM)

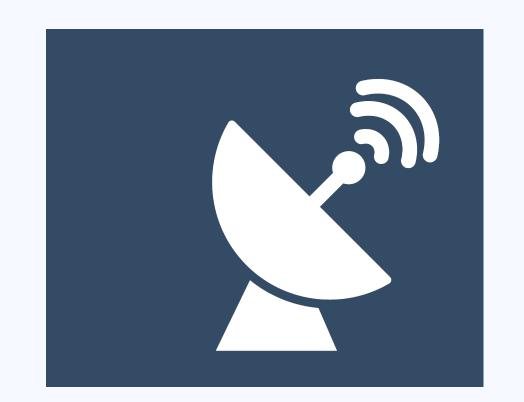

FAA small UAS (Unmanned Aerial System) part 107 waiver

Beyond visual line of sight (BVLOS) waiver

Automatic privacy blurring (faces, license plates, etc.)

Key Technology

Loop-Mediated Isothermal Testing (LAMP)



- Only requires water sample on the micro-liter scale
- Bacteria detection in less than 30 minutes

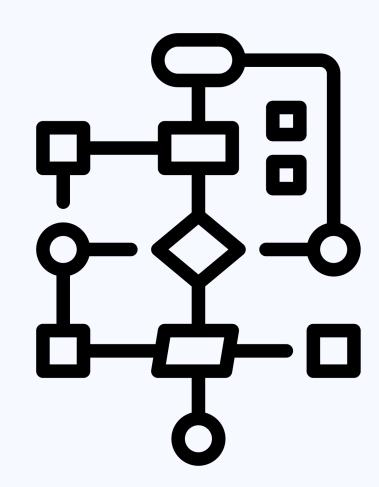
Note: Current tests for bacteria require 1 liter of water and a 24-hr incubation period

Key Technology

Hybrid Free Space Optics
Communications Network

- Free space optics for high bit data transfer
- Radio frequency as backup

Note: Software methods in research for environmental disturbance compensation


Key Technology

Imaging and Computational Algorithms:

Convolutional Neural Networks (CNNs)

Structure from Motion (Sfm)

Large-scale particle image velocimetry (LS-PIV)

- CNN: Debris classification and identification
- Sfm: 3D structures estimated from 2D images
- LS-PIV: Series of images → Video → Streamflow Estimate

Assessment with RECOVER

		DATE				
				PART I - APPLICANT IN	FORMATION	
NAME OF LOCAL CONTACT PUBLIC			PUBLIC ENTITY	COUNTY		STATE
PHONE NO.			POPULATION	MILES OF ROADWAY		
			PART II - COST ESTIMA	TE SUMMARY (COMPLETE SIT	E ESTIMATE BEFORE SUMMARIZING	BELOW)
CATE-GORY	NO. OF SITES	TYPE OF DAMAGE		COST ESTIMATE		
	110.0101120		TE OF BAWAGE	OOOT EOTIMIZATE	WORK COMPLETED	WORK TO BE COMPLETE
Α		DEBRIS REMOVAL				
В		EMERGENCY PROTECTIVE MEASURE		E <mark></mark>		
С		ROADS AND BRIDGES				
D		WATER CONTROL FACILITIES				
E		BUILDINGS & EQUIPMENT				
F		UTILITIES				
G		PARKS, RECREATIONAL, & OTHER				
			TOTA	L \$ -		
			PART III . DI	SASTER IMPACTS (USE SEP	RATE SHEETS IF NECESSARY)	•

Blank Preliminary Damage Assessment Source: Courtesy of Donald Grantham, FEMA

Can be automated from collected drone data (GPS, Debris Classification, etc.)

01. Efficient

02. Less Personnel

Risk of Hazardous Exposure
Human Error

Cost Estimation:

Upfront Costs: \$185,000

Communications System

Ground Control Components

Hardware Components

Operator Salary

58%

23%

18%

<1%

Cost Estimation:

Recurring Costs: \$2,000

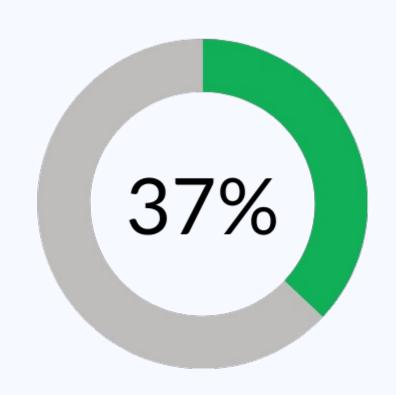
Operator Salary

50%

High Performance Computing

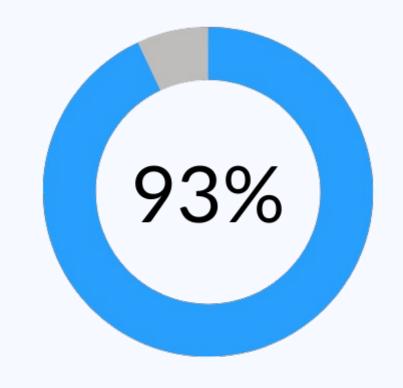
32%

Operator Travel Expenses

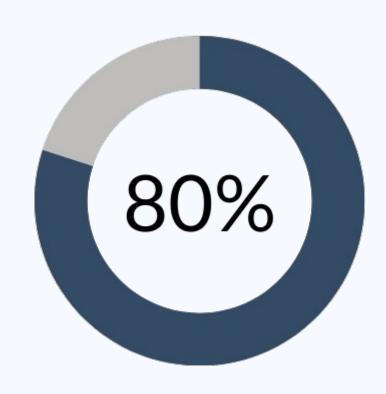

18%

Comparative Metrics

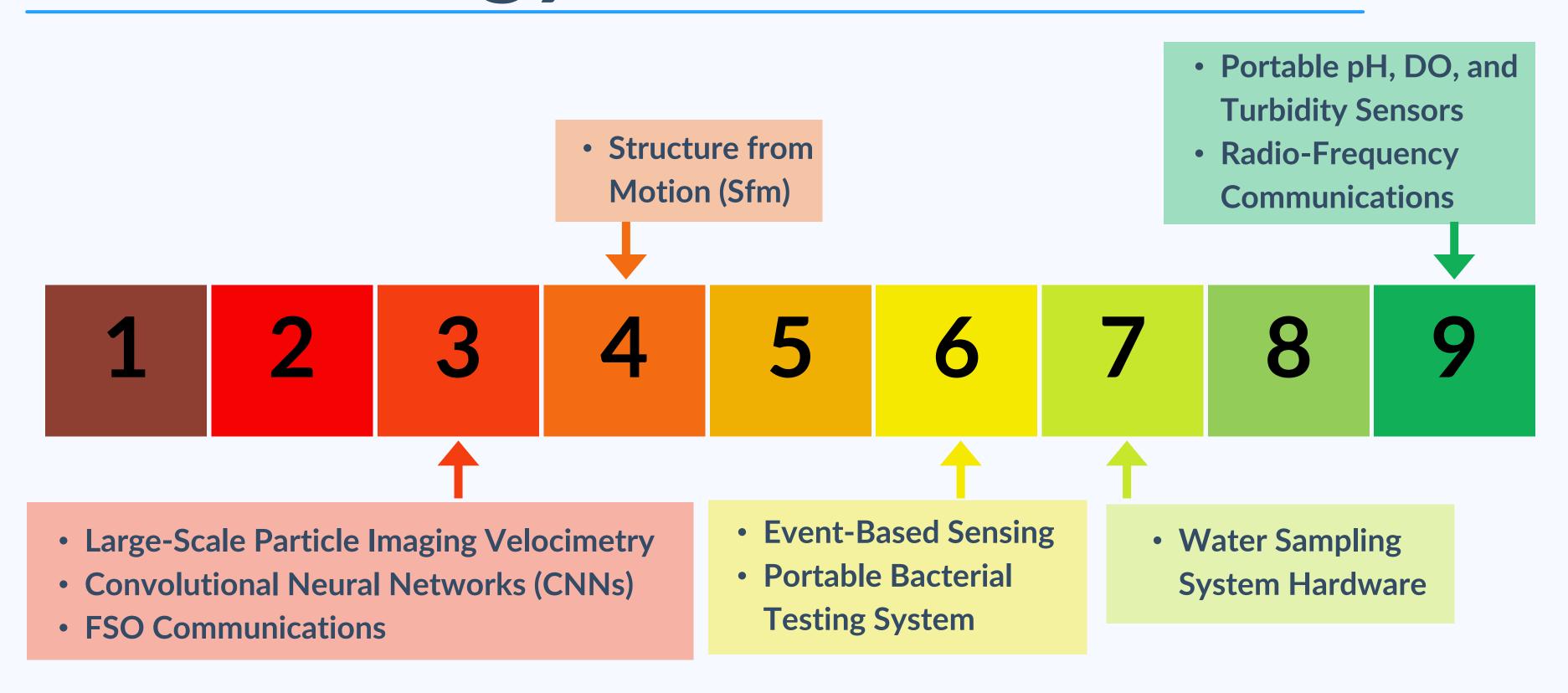
	Current System *	Our System (RECOVER)	
Cost	\$300,000+ (Recurring costs only: Personnel travel/sampling)	~\$190,000 (Recurring and non- recurring costs)	
Time Required	~28 Days	~2 Days Buffer included for travel	
Personnel Required	~10-12 People	2 People	


^{*} Based on Interviews with FEMA, Austin Watershed Protection

System Improvements


More cost effective after first use

Reduction in time required for assessment



Reduction in required personnel

Technology Readiness Levels

Implementation Timeline

2024-2026

2026-2029

2029-2030

- DroneHardwareDesignCompletion
- GroundControlStation (GCS)Completion

- RapidBacteria TestDevelopedfor Field
- DevelopedSensingCapabilities

- CommsNetworkDeveloped (RF and FSO)
- SystemIntegration
- Initial UserInterfaceTesting

2030-2033

2033-2034

2034-2035

- FAA WaiversRequested
- Format OutputData forGovernmentNeeds
- User InterfaceTesting

 System Operator Training (Drone Reloading/ Water Sampling Handling/ System Monitoring)

Field Training and Qualification of System

Conclusions

RECOVER will assess flood damage over 10x faster than current means

Reduced personnel requirement by 80% allowing for staff to support other efforts

Total initial cost of \$190k for reusable system; Recurring cost of \$2k

Consistency and accuracy in reporting through automation

Collected data serves as authoritative source of truth for use by multiple agencies

System implementable by 2035 with full regulatory compliance

Acknowledgments

- Dr. Anthony Linn (Project Advisor)
- Donald Grantham (Federal Emergency Management Agency)
- Dr. Clara Decerbo (Providence Incident Manager)
- Christopher Doherty (Federal Aviation Administration)
- Heather Lambie (US Coast Guard Emergency Management Specialist)
- Robert Clayton (Flood Office and Modeling City of Austin)
- David Campbell (All Hands and Hearts)
- Dr. Carlo Pinciroli (Worcester Polytechnic Institute Robotics Professor)
- Dr. Joerg Werner (Boston University Engineering Professor)
- Dr. Matthew Jones (MIT Lincoln Lab)

Thank you

Any questions?

References

- 1. Department of Homeland Security. "Natural Disasters." Department of Homeland Security, www.dhs.gov/natural-disasters.
- 2. U.S. Department of Health and Human Services. "Flooding." Climate Change, Health Equity, & Environmental Justice, U.S. Department of Health and Human Services, www.hhs.gov/climate-change-health-equity-environmental-justice/climate-change-health-equity/climate-health-outlook/flooding/index.html.
- 3. United States Environmental Protection Agency. "EPA Unmanned Aircraft Systems (UAS) Program."EPA-EnvironmentalProtectionAgency, www.epa.gov/geospatial/epa-unmanned-aircraft-systems-uas-program.
- 4. Dukowitz, Zacc. "Nixie System Cuts Cost of Collecting Water Samples by 90%." UAV Coach, 30 June 2021, uavcoach.com/nixie/.
- 5. "Climate change impact on flood and extreme precipitation increases" 13 Aug. 2020, https://www.nature.com/articles/s41598-020-70816-2. Accessed 10 Dec. 2023.
- 6. "Increases all round | Nature Climate Change." 7 Mar. 2016, https://www.nature.com/articles/nclimate2966. Accessed 10 Dec. 2023.
- 7. "Sunk costs: the socioeconomic impacts of flooding Marsh McLennan."
- https://www.marshmclennan.com/insights/publications/2021/june/the-socioeconomic-impacts-of-flooding.html. Accessed 10 Dec. 2023.
- 8. National Oceanic and Atmospheric Administration (NOAA). "High Tide Flooding Annual Outlook." NOAA Tides & Currents, tidesandcurrents.noaa.gov/HighTideFlooding_AnnualOutlook.html.
- 9. The Washington Post. "Flooding Hits South Texas, Tennessee, Mississippi." The Washington Post, www.washingtonpost.com/weather/2024/01/24/flooding-south-texas-tennessee-mississippi/.
- 10. Federal Emergency Management Agency. "Damage Assessment Manual." FEMA, 6 April 2016, https://www.fema.gov/sites/default/files/2020-07/Damage_Assessment_Manual_April62016.pdf.
- 11. "2012 Hurricane Sandy USGS Response." U.S. Geological Survey, https://water.usgs.gov/owq/floods/2012/sandy/.
- 12. Grantham, Donald (FEMA Region 1 Supervisory Emergency Management Specialist). Personal interview. 23 January 2024.
- 13. Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Hussain Amjad, Hybrid FSO/RF networks: A review of practical constraints, applications and challenges, Optical Switching and Networking
- 14. Bacco M, Colucci M, Gotta A, Kourogiorgas C, Panagopoulos AD. Reliable M2M/IoT data delivery from FANETs via satellite. Int J Satell Commun Network. 2019; 37: 331–342. https://doi.org/10.1002/sat.1274

- 15. Frontiers. "Heterogeneous Swarm Robotics." Frontiers in Robotics and AI, Frontiers, www.frontiersin.org/research-topics/52951/heterogeneous-swarm-robotics.
- 16. Q. Cui, P. Liu, J. Wang and J. Yu, "Brief analysis of drone swarms communication," 2017 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 2017, pp. 463-466, doi: 10.1109/ICUS.2017.8278390.
- 17. Yuksem, Mehmet. "FSO-MANET." University of Central Florida, www.ece.ucf.edu/~yuksem/fso-manet.html#motivation.
- 18. Li, L., Zhang, R., Zhao, Z. et al. High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital-Angular-MomentumBeams. SciRep7, 17427; (2017). https://doi.org/10.1038/s41598-017-17580-y.
- 19. "Nordic Wing Use Case." Domo Tactical Communications, www.domotactical.com/assets/images/Nordic-Wing-Use-Case.pdf.
- 20. "DTC BluSDR™-30." Domo Tactical Communications, https://www.domotactical.com/assets/downloads/Datasheets/BluSDR-30-2x1W-BluSDR-Module.pdf.
- 21. "SONAbeam™ 1250-M." fSONA Products, http://www.fsona.com/product.php?sec=1250m
- 22. Kelman, Ilan. "An overview of flood actions on buildings." Engineering Geology, vol. 73, no. 3-4, 2004, pp. 297-309. Elsevier.
- 23. Fonstad, Mark A. "Topographic structure from motion: a new development in photogrammetric measurement." Letters to Earth Surface Processes and Landforms, vol. 38, no. 4, 2012, pp. 421-430. Wiley Online Library, https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.3366.
- 24. Rosende, Sergio Bemposta. "Implementation of an Edge-Computing Vision System on Reduced-Board Computers Embedded in UAVs for Intelligent Traffic Management." Drones, vol. 11, no. -, 2023, p. 682. MDPI, https://www.mdpi.com/2504-446X/7/11/682.
- 25. Kyrkou, Christos. "DroNet: Efficient convolutional neural network detector for real-time UAV applications." 2018 Design, Automation & Test in Europe Conference & Exhibition, vol. -, no. -, 2018, pp. 967-972. arxiv.
- 26. Dobson, David W. "Fast, large-scale, particle image velocimetry-based estimations of river surface velocity." Computers and Geosciences, vol. 70, 2014, pp. 35-43. ScienceDirect, https://www.sciencedirect.com/science/article/pii/S0098300414001204?via=ihub.
- 27. United States Environmental Protection Agency. "Method 180.1: Determination of Turbidity by Nephelometry." EPA-Environmental Protection Agency, www.epa.gov/sites/default/files/2015-08/documents/method_180-1_1993.pdf.
- 28. U.S. Geological Survey. "Water Quality Watch." USGS U.S. Geological Survey, waterwatch.usgs.gov/wqwatch/.
- 29. Clayton, Robert (City of Austin Flood Office and Modeling Watershed Protection Department) Personal interview. January 24, 2024
- 30. MDPI. "In Situ Water Quality Measurements Using an Unmanned Aerial Vehicle (UAV) System." Water, vol. 10, no. 3, 2018, p. 264. https://www.mdpi.com/2073-
- 4441/10/3/264#:~:text=The%20primary%20purpose%20of%20using,source%20multiprobe%20meter%20(OSMM).
- 31. IDEXX Laboratories. "Quanti-Tray® Sealer PLUS." IDEXX Laboratories, www.idexx.com/en/water/water-products-services/quanti-tray-system/.
- 32. Seunguk Lee, Valerie Si Ling Khoo, Carl Angelo Dulatre Medriano, Taewoo Lee, Sung-Yong Park, Sungwoo Bae, "Rapid and in-situ detection of fecal indicator bacteria in water using simple DNA extraction and portable loop-mediated isothermal amplification (LAMP) PCR methods"

- 33. University of Zurich, Robotics and Perception Group. "Research Dynamic Vision Sensors (DVS)." University of Zurich, rpg.ifi.uzh.ch/research_dvs.html.
- 34. Federal Aviation Administration. "Section 4. Airspace Access for UAS." Federal Aviation Administration, 2023, https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap11_section_4.html.
- 35. United States Environmental Protection Agency. "Status of Water Systems in Areas Affected by Harvey." EPA-Environmental Protection Agency, www.epa.gov/archive/epa/newsreleases/status-water-systems-areas-affected-harvey.html.
- 36. Aircraft Owners and Pilots Association (AOPA). "Amid Warnings, Drones Respond to Harvey." AOPA-AircraftOwnersandPilotsAssociation, www.aopa.org/news-and-media/all-news/2017/august/31/amid-warnings-drones-respond-to-harvey.
- 37. Government Technology. "Harvey Offers Preview of How Drones Could Be Used to Speed Up Rebuilding."GovernmentTechnology, www.govtech.com/public-safety/harvey-offers-preview-of-how-drones-could-be-used-to-speed-up-rebuilding.html.
- 38. EagleView."PublicWorksSolutions." EagleView, www.eagleview.com/government/public-works/.
- 39. Lewis, Qinn. "Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging." Journal of Hydrology, vol. 560, no. -, 2018, pp. 230-246. ScienceDirect.
- 40. Jiang, San. "Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools." ISPRS Journal of Photogrammetry and Remote Sensing, vol. 167, no. 1, 2020, pp. 230-261. ScienceDirect.
- 41. Liu, Wen-Cheng. "Large-Scale Particle Image Velocimetry to Measure Streamflow from Videos Recorded from Unmanned Aerial Vehicle and Fixed Imaging System." Remote Sensing, vol. 14, no. -, 2021, p. 2661. ScienceDirect, https://www.mdpi.com/2072-4292/13/14/2661.
- 42. Wang, Simon. "Extreme event deja vu: Hurricane Harvey (2017) and Louisiana flood (2016)." US CLIVAR, 18 June 2018, https://usclivar.org/research-highlights/extreme-event-deja-vu-hurricane-harvey-2017-and-louisiana-flood-2016.
- 43. Amazon Web Services. "EC2 On-Demand Instance Pricing Amazon Web Services." AWS, https://aws.amazon.com/ec2/pricing/on-demand/. Accessed 24 February 2024
- 44. FEMA. "FEMA Recovery Policy." Secure Data Sharing. FEMA Disaster Recovery Assistance Files System of Records Notice, 9 September 2013. fema.gov, https://www.fema.gov/sites/default/files/2020-
- 05/Recovery_Policy_Sharing_Survivor_Data_with_Trusted_Partners_090913.pdf.
- 45. "Certificated Remote Pilots including Commercial Operators." Federal Aviation Administration, https://www.faa.gov/uas/commercial_operators
- 46. "Emergency Situations." Federal Aviation Administration, https://www.faa.gov/uas/advanced_operations/emergency_situations
- 47. Repko, Melissa. "Drones Prove Valuable to Post-Harvey Recovery Efforts." Government Technology, The Texas Tribune, 22 Sept. 2017, www.texastribune.org/2017/09/22/after-harvey-another-mammoth-challenge-flooded-areas-getting-rid-mount/#:~:text=In%20addition%20to%20Houston. Accessed 23 Apr. 2024.

- 48. Norris, Mike. "2 Years Post-Harvey, Thousands Still Displaced, in Damaged Homes." GovTech, Houston Chronicle, 23 Aug. 2019, www.govtech.com/em/disaster/two-years-after-harvey-thousands-remain-displaced-in-damaged-homes.html. Accessed 23 Apr. 2024. 49. "Hurricane Harvey Recovery Resources." Www.lbb.texas.gov, State of Texas Legislative Budget Board, 2019, www.lbb.texas.gov/Harvey.aspx. Accessed 23 Apr. 2024.
- 50. "National Flood Hazard Layer | FEMA.gov." Www.fema.gov, U.S. Department of Homeland Security, 28 Mar. 2024, www.fema.gov/flood-maps/national-flood-hazard-layer.
- 51. Dr. Decerbo, Clara (Director of Providence Emergency Management Agency, Office of Homeland Security). Personal interview. 23 April 2024.
- 52. Metrohm AG. "Product Page." Metrohm AG, https://www.metrohm.com/en_us/products/2/9460/29460010.html. Accessed 27 Apr. 2024 53. Yard, Ellen E, et al. "Microbial and Chemical Contamination during and after Flooding in the Ohio River-Kentucky, 2011." Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, U.S. National Library of Medicine, 19 Sept. 2014, www.ncbi.nlm.nih.gov/pmc/articles/PMC5629288/.
- 54. US Department of Commerce, NOAA. "The Great Vermont Flood of 10-11 July 2023: Preliminary Meteorological Summary." National Weather Service, NOAA's National Weather Service, 28 Aug. 2023, www.weather.gov/btv/The-Great-Vermont-Flood-of-10-11-July-2023-Preliminary-Meteorological-Summary.
- 55. 2022 sea level rise technical report. NOAA's National Ocean Service. (2022, February 15). https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html#:~:text=%E2%80%9CMajor%E2%80%9D%20(often%20destructive),year%2Dto%2Dyear%20variability.

