

Boston University

"PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment"

PLAANT: Precision Land Analysis and Aerial Nitrogen Treatment

The Boston University Presentation will begin at 9:35 AM Pacific Time. View the 2025 Finalists' Infographics: <u>https://blueskies.nianet.org/finalists/</u>

BLUESKIES

PLAANT

Precision Land Analysis and Aerial Nitrogen Treatment

Our Team

3

Addison Chu

Senior, Mechanical Engineering*

Jillian Martin

Team Lead Senior, Mechanical Engineering*†

John Fitzgerald Senior, Mechanical Engineering*

Charles Litynski

Senior, Mechanical Engineering

Ethan Jackson Senior, Mechanical Engineering*

Prof. James Geiger

Advisor, Adjunct Professor, Mechanical Engineering

*Aerospace Concentration †Energy Technologies & Sustainability Concentration

Problem Area Comparison

1-3-9 Decision Matrix	x <u>Metrics:</u> Selected technical area		а				
Technical Area:	Opportunity	Cost	Scope	Technology	Environment	Future Trend	Total
Cropland / Rangeland Surveyance + Conservation	3	3	9	3	3	9	30
Pest & Disease Management	3	9	9	3	9	9	42
Agriculture Inspection	3	3	3	3	1	3	16
Targeted Fertilizer Application	3	9	9	3	9	9	42
EAV's (Essential Agriculture Variables)	3	3	3	3	3	3	18
Autonomous Missions	3	3	1	3	1	3	14
Livestock Management	3	9	3	3	3	3	24
Improved Weather Accuracy	3	9	9	3	9	9	42

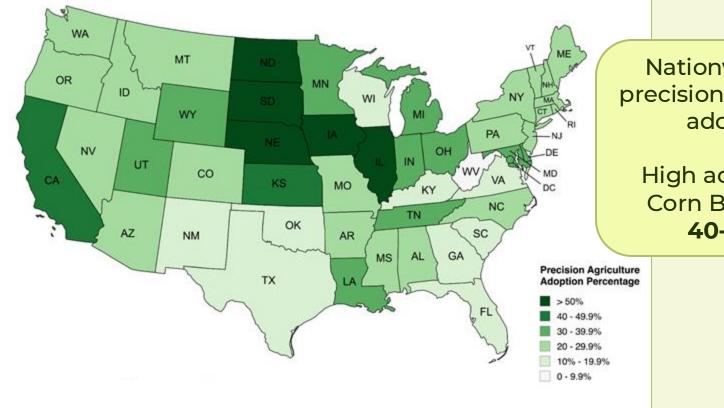
PLAANT addresses the critical issue of *fertilizer resource management*.

Targeted Fertilizer Application

Precision Agriculture (PA): The use of advanced sensor and analysis tools to improve agricultural operations with data-driven insights.

Technologies Utilized by PLAANT

- Ag modeling
- Multispectral surveying
- Targeted Fertilization Application


Variable-rate fertilization

Tailored application of fertilizer based on an area's **individually assessed need**.

Nitrogen Fertilization

- Accounts for over 50% global fertilization consumption
- ~70% of American farmland, >97% of planted corn acres
- Peak uptake in vegetative growth

Precision Agriculture Adoption in the U.S.

Nationwide **27%** precision agriculture adoption

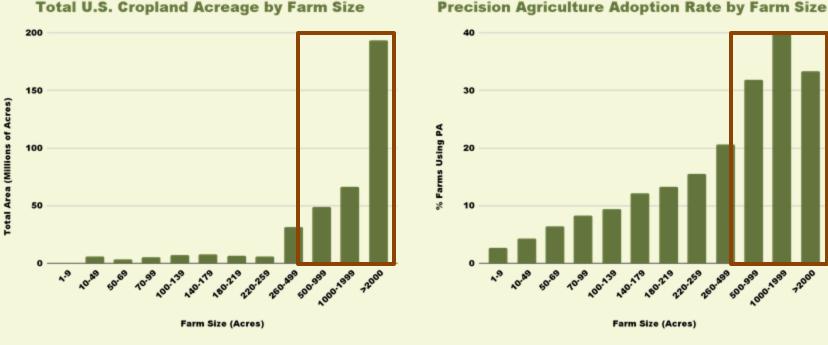
High adoption in Corn Belt states **40-50+%**

Response to Problem Area: *PLAANT*

Assessed Need

- Nitrogen is a key nutrient, but limiting factor, for plant growth
- Inefficient fertilizer application → runoff, GHG emissions, and \$ losses
- Current fertilizer technology outpaces nitrogen detection capabilities

Primary Use Cases


- Real-time field monitoring for targeted fertilizer application
- Precision Ag. system integration for long-term management

Target Audience

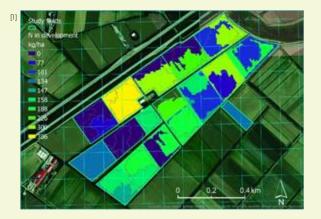
• Cropland containing corn, soybeans, cotton: high-production and N needs

PLAANT combines cross-scale nitrogen information to optimize targeted fertilization and improve **nitrogen use efficiency (NUE)**.

Primary Audience

Precision Agriculture Adoption Rate by Farm Size

~ 80% of cropland found on > 400 acre farms Among these farms, **Precision Agriculture Adoption = 20-40%**


Source: USDA 2024

Challenges to Precise Nitrogen Application

Soil Nitrogen Dynamics

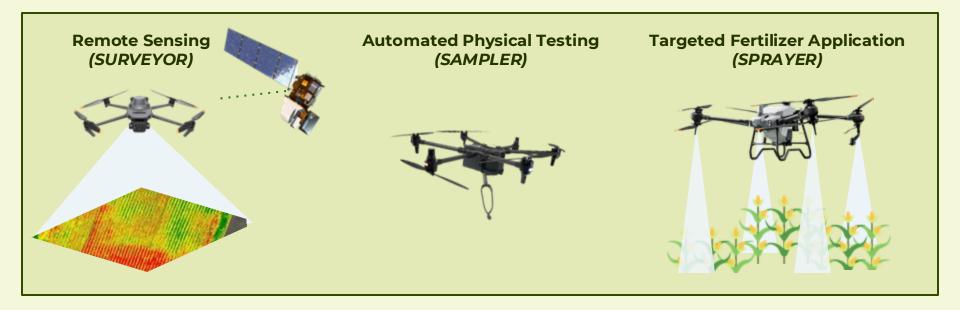
Spatially and Temporally Heterogeneous

Dependent on Exogenous Variables

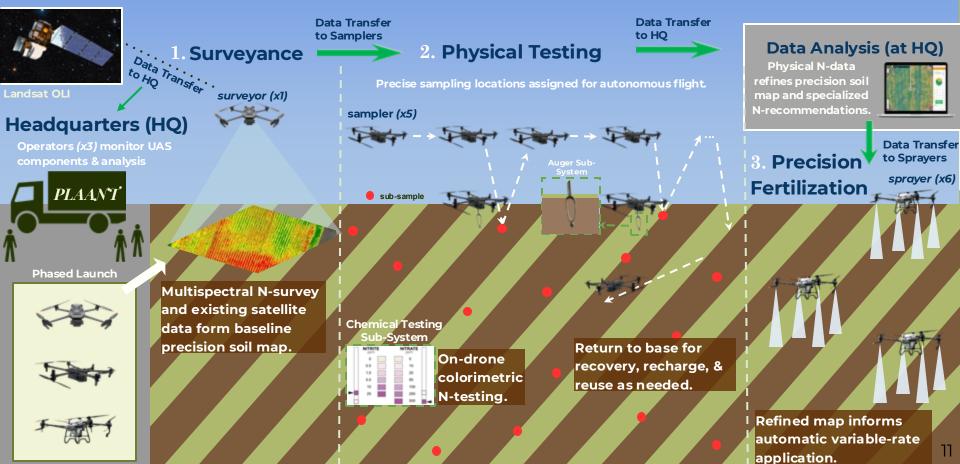
Current Nitrogen Testing

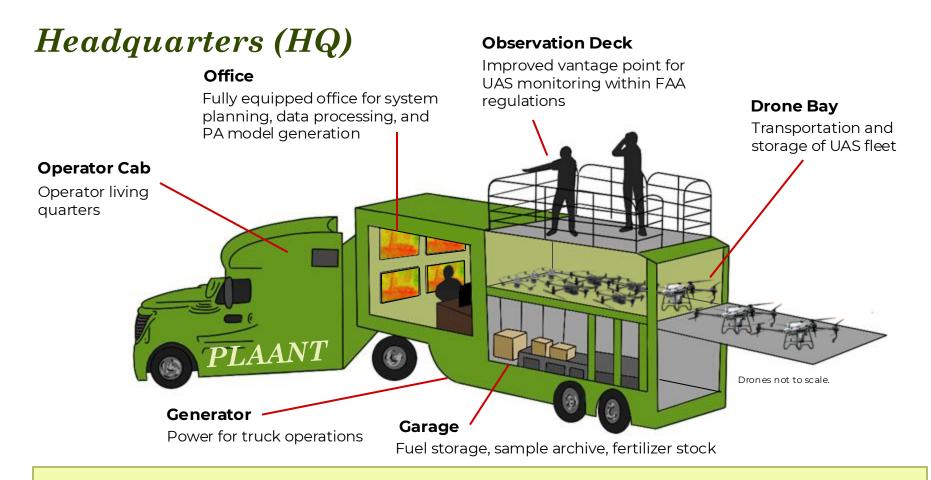
Time and Labor Intensive

Long Lead Times


Low Adoption

9


[1] C. Karydas, M. latrou, G. latrou, and S. Mourelatos, "Management Zone Delineation for Site-Specific Fertilization in Rice Crop Using Multi-Temporal RapidEye Imagery," *Remote Sensing*, vol. 12, no. 16, p. 2604, Aug. 2020, doi: <u>10.3390/rs12162604</u>.
 [2] M. Hazard, "Img_0977 Xai tou soil sample Hafa Farm," Flickr, https://www.flickr.com/photos/88709139@N08/15569070266.


System Components

Phases integrate **existing** and **novel** precision agriculture tech. for **high modularity** and **solution flexibility.**

Concept of Operations (ConOps)

Headquarters manages PLAANT operations from centralized on-site location.

1. Surveyance - Remote Sensing

Multispectral Analysis -

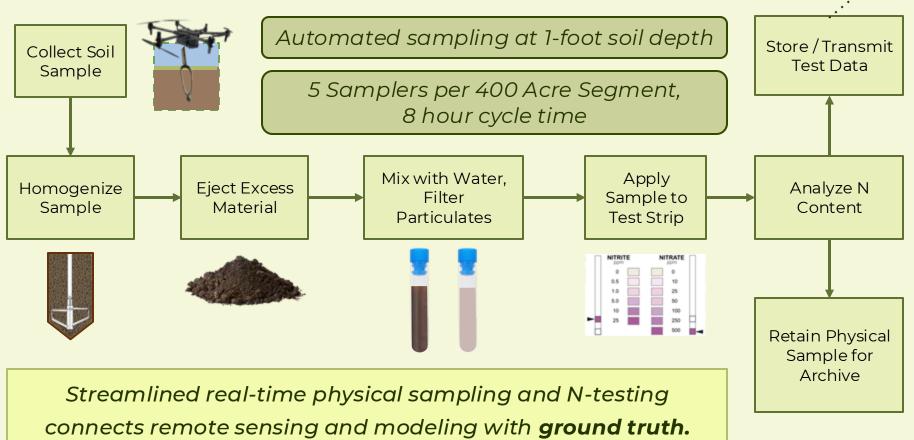
- N impacts crop vigor and band-specific reflectance
- Used to calculate and map vegetation indices
- Most applicable after crop emergence, critical uptake period, late season

Drone

- 1x per field, 5 acres/s
- Narrow swath, high res
- Real-time context
- Spatial baseline

Satellite

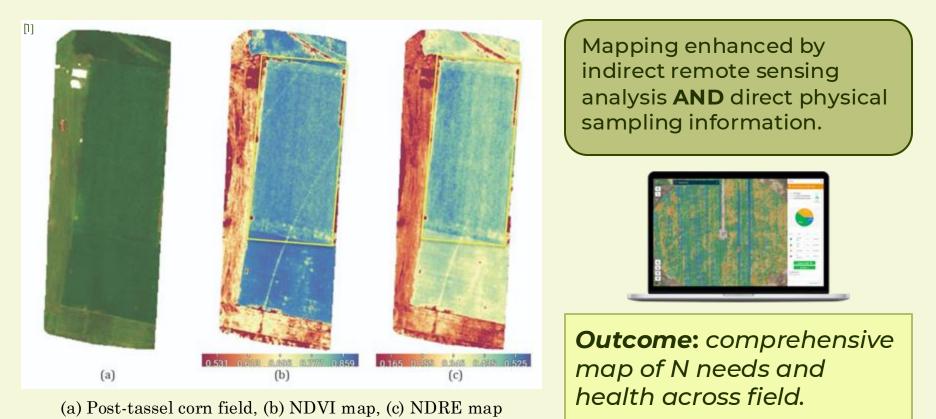
- Landsat OLI
- Wide swath, low res
- Consistent illumination
- Temporal baseline


Normalized Difference Vegetation Index

 $NDVI = \frac{NIR - Red}{NIR + Red}$

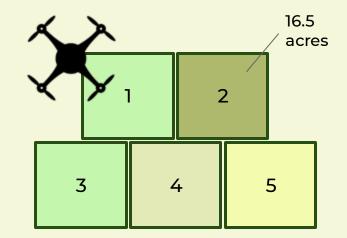
 $NORMAL = \frac{NIR - Red Edge}{NIR + Red Edge}$

Forms **baseline** of precision map of N needs.


2. Sampling – Test Operations

Analysis

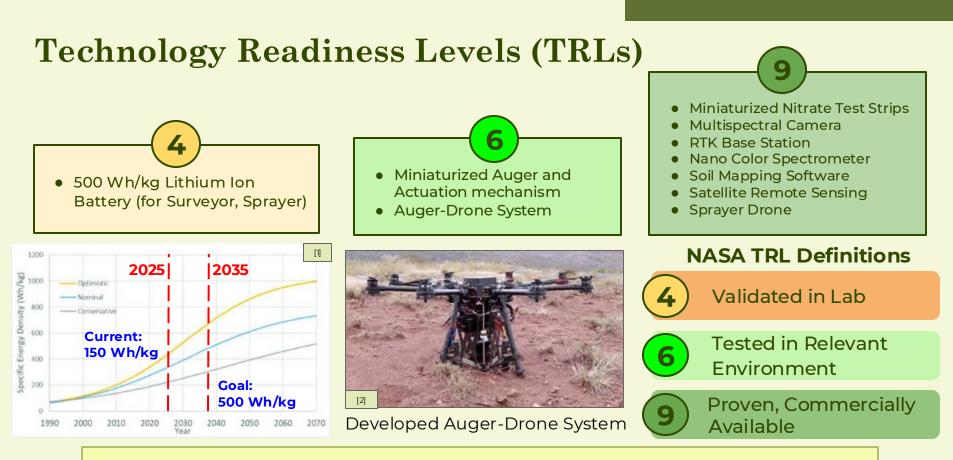
at HC


Data Analysis and Precision Mapping

[1] L. J. Thompson, Y. Shi, and R. B. Ferguson, "Getting Started with Drones in Agriculture," Nebraska Extension, University of Nebraska-Lincoln

3. Spraying – Targeted Fertilizer Treatment

Fertilizer Application - leverages the informed N model for precise, targeted variable-rate treatment



Covers 16.5 acres/hr/drone

6 Sprayer Drones per 400 acre segment, 4 hr cycle time

Critical Components of *PLAANT*

Component	Image	Purpose			
Nitrate Test Strips		Rapid color-analysis soil test			
Auger & Actuation		Soil drilling, sampling			
Multispectral Camera		Detect growth activity			
Additional Components	Modified Quadcopter, Auger-Actuation System, RTK Base Station, Color Spectrometer, Precision Agriculture Software				

PLAANT leverages mature technology to realistically improve NUE.

[1] B. Tiede, et. al, "Battery Key Performance Projections based on Historical Trends and Chemistries," NASA Glenn Research Center
 [2] Ackerman, Evan. "How to Dig a Hole with Two Drones and a Parachute." IEEE Spectrum

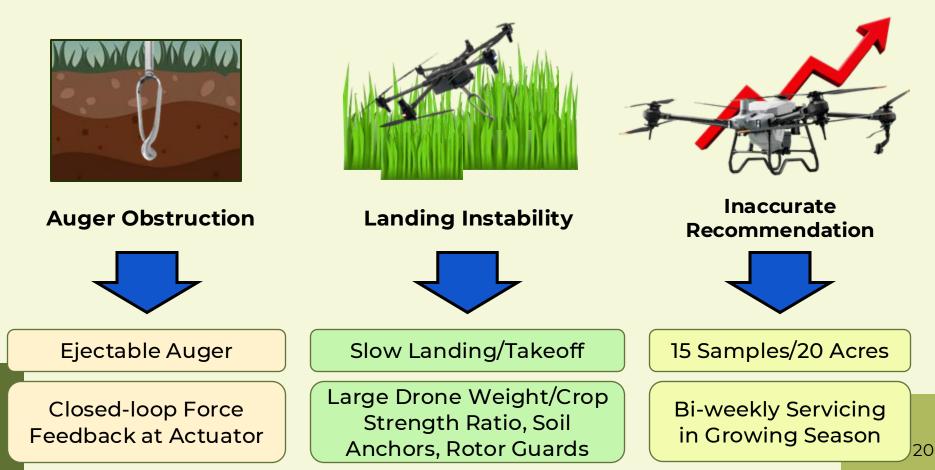
Drone Sizing Analysis

Characteristic	Surveyor	Soil Sampler	Sprayer
Gross Weight [lb]	1.90 ^[1]	108 [2]	163 ^[2]
Frame Dimensions [ft] (L x W x D)	0.40 × 0.40 × 0.10	3.0 × 3.0 × 0.43	4.5 x 4.5 x 0.60
Payload [lb]	0.24 ^[3]	20 [4]	70 ^[5]
Battery [Wh/kg]	150 [6]	—	150 ^[6]
Gas Fuel (per Flight) [lb]	—	0.3 [7]	—
Lift/Drag	4.23	4.22	1.02
Drone Service Life [year]	2	5	5

×

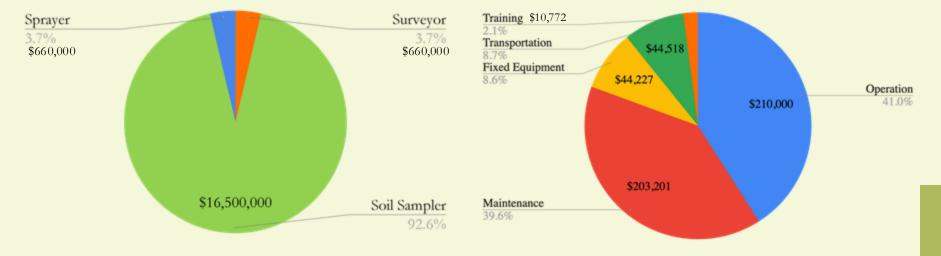
[1] "DJI Mavic 3 pro - Specs - DJI." DJI Official

[2] "T30 - Specifications - DJI." DJI Official


 [3] Fawcett, Dominic, et al. "Multi-scale evaluation of drone-based multispectral surface reflectance and vegetation indices in operational conditions." Remote Sensing.

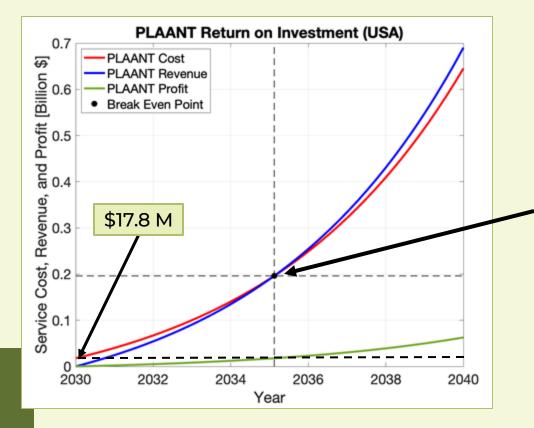
 [4] "Cuav New VT240 Pro Vtol." World Drone Market.
 [5] "DJI Agras FAQ." Agri Spray Drones.

[6] B. Tiede, C. O'Meara and R. Jansen, "Battery Key Performance Projections based on Historical Trends and Chemistries," 2022 ITEC.


[7] "Energy Density." Beloit Education.

Risk Analysis and Abatement

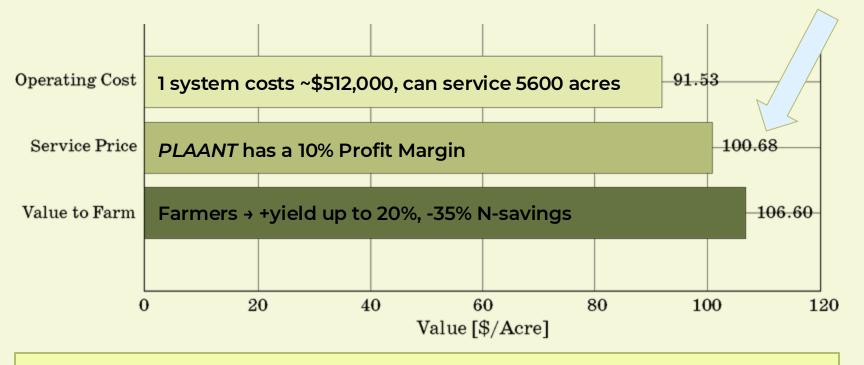
Cost Breakdown


Non-Recurring Cost Breakdown [\$] Total: \$17,820,000 Recurring Cost Breakdown [\$/year] (5600 Acres/Year) Total: \$512,718/year

Labor cost = Biggest factor in Maintenance & Operation

Non-Recurring attributed to singular RTD&E expenses

PLAANT ROI at Full Projected U.S. Deployment


Non Recurring Cost: \$17.8M Initial Profit Margin: 10% US Launch: 2030

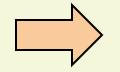
Break Even Point:

- 2035
- 0.45% Cropland Adoption
- ~1.35 M acres serviced
- \$16.2 M increase in Yield
- 4.4 M (lb) Nitrogen saved

Value to Farmers

Compared to current Fertilizer spend of ~\$200/acre

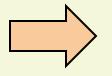
PLAANT is Affordable -> Farms experience **6.4% return on investment**


Increased Profit Area → + 20% Yield, - 35% N-Savings

Derived Value

Environmental Impact

Greenhouse Gas Emissions


N-fertilizer production and use cause **5% of global GHG emissions**

13 Mt/yr CO₂eq reduction in U.S. GHG emissions

Water Pollution

Water eutrophication from nitrogen, phosphorus fertilizers costs **\$2.4 billion/yr** in U.S.

\$150 million/yr savings on water eutrophication in U.S.

Extended Impact

Expanded data availability for agricultural research

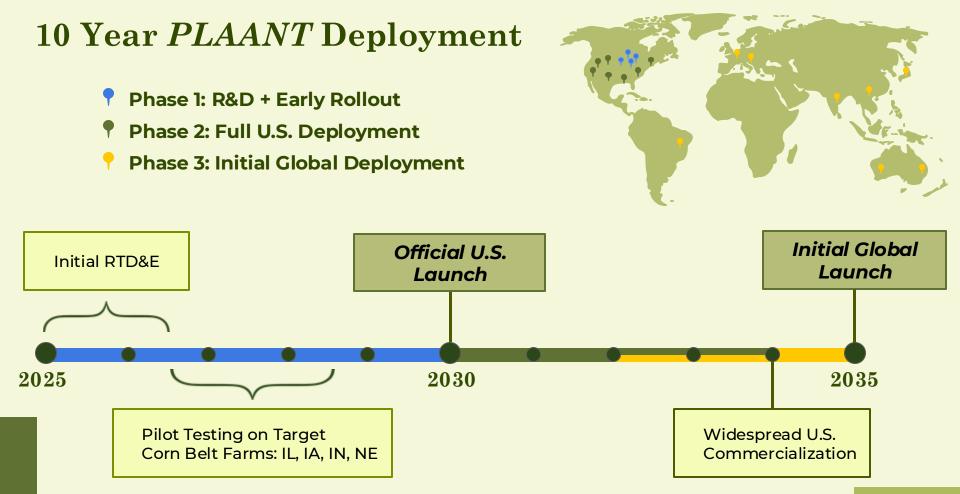
Increased visibility of complex soil dynamics

Implementation Barriers and Considerations

Regulatory Compliance

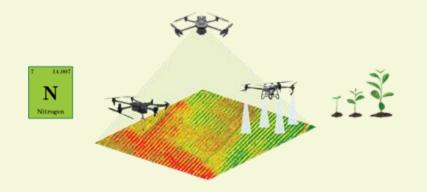
- Waiver 107.35 (1 Operator → 3 Drones)
- Part 137 and Part 135 → Proper disposal of soil sample
- EPA regulations
- Farmer data privacy

Training Needs


- FAA Part 107 for UAV Pilot Certification
- Specialized training for *PLAANT* system operators
- USDA support (e.g. Environmental Quality Incentives Program, TSP)

Adoption Challenges

- < 50% of farms use PA due to service cost, data unfamiliarity
- PA market growth → offered by 20-50% service providers
- Product diffusion into market


USDA

Additional Considerations

Technology Improvements

- Testing for different nutrients and N-types
- Assimilation with Satellite NO_x data to address U.N. Sustainable Development Goals
- Further IoT and ML integration to improve modeling & simulation capabilities

Full Global Rollout

- Adaptation for varying global regions
- Application towards **region specific crops**

Consulted Experts

NASA Acres, UIUC

Advised On: Cross-scale soil sampling and data assimilation for increased NUE

Prof. Raj Khosla KSU Agronomy

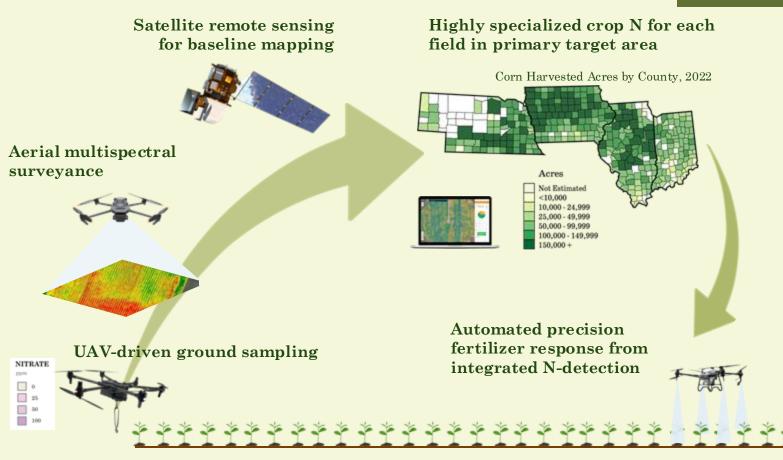
Advised On: Precision Ag UAS for Nutrient Management, N management in Midwest

Prof. Kenneth Sebesta *BU Mechanical Engineering* Advised On: **Drone Hardware**

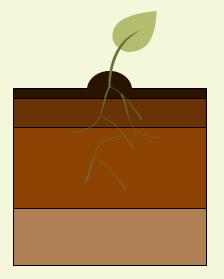
Prof. Hemendra Kumar *UMD Precision Ag Specialist* Advised On: **UAS, Remote Sensing**

Prof. Xia Zhu-Barker UW-M Soil Science Advised On: **Soil Sampling, N Dynamics**

Prof. Mark Friedl BU Earth & Environment Advised On: **Environment Impact**



Miguel Oliveras NRCS TSP Coordinator, Central Region Advised On: **TSP Integration & Gov. Programs**


Prof. Michael Dietze *BU Earth & Environment* Advised On: **Soil Nutrients**

PLAANT System Overview

Thanks!

Any questions?

NASA'S GATEWAYS TO BLUESKIES 2025 AgAir: Aviation Solutions for Agriculture Forum