IRON POWDER AS A CLEAN AVIATION FUEL SOURCE

GATEWAYS TO BLUESKIES

Inspire. Innovate. Impact.

2023 Theme: Clean Aviation Energy

https://blueskies.nianet.org

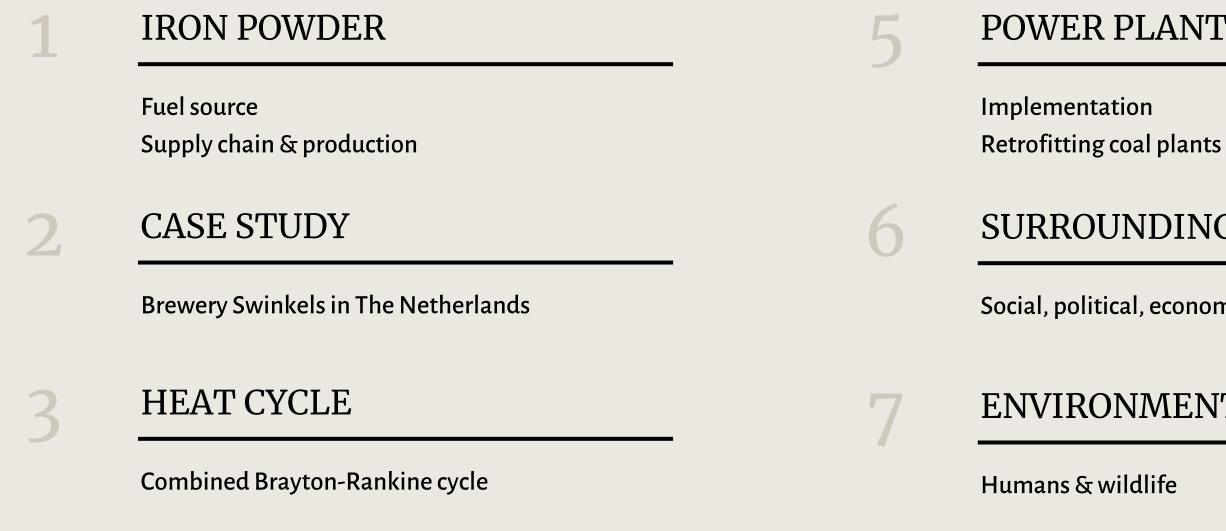
The Gateways to Blue Skies Competition is sponsored by NASA's Aeronautics Research Mission Directorate and is managed by the National Institute of Aerospace.

MEET THE TEAM

KAYLEA GAUGHAN

HADASSAH FLAGG

ADVISOR: DR. ANTHONY LINN



EMILY OSURMAN

MICHELLE RAMOSKA

Table of Contents

BATTERIES

Energy storage Supply chain & tech advancement

BOSTON UNIVERSITY

POWER PLANTS

SURROUNDING FACTORS

Social, political, economic

ENVIRONMENTAL IMPACTS

Iron Powder

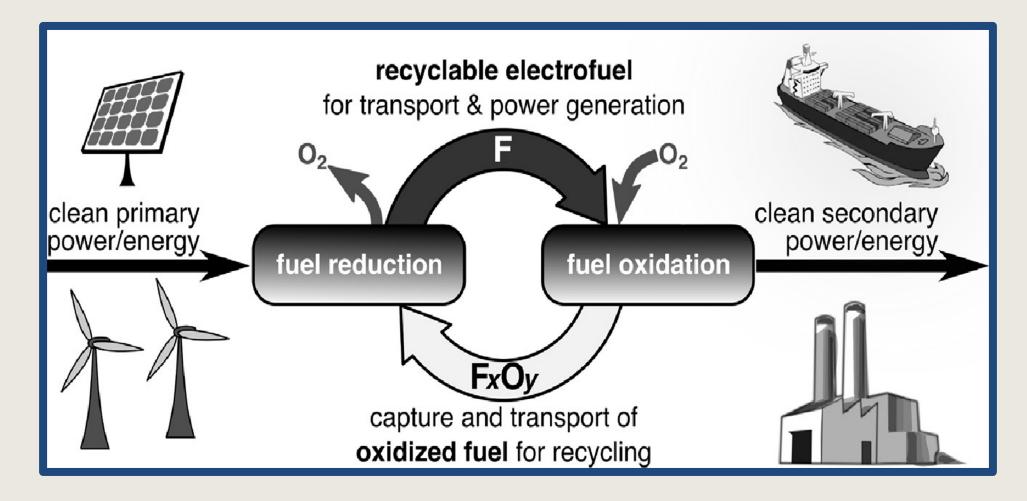
COMBUSTIBLE

Combustion of iron powder can create energy through a heat cycle.

2

ACCESSIBLE

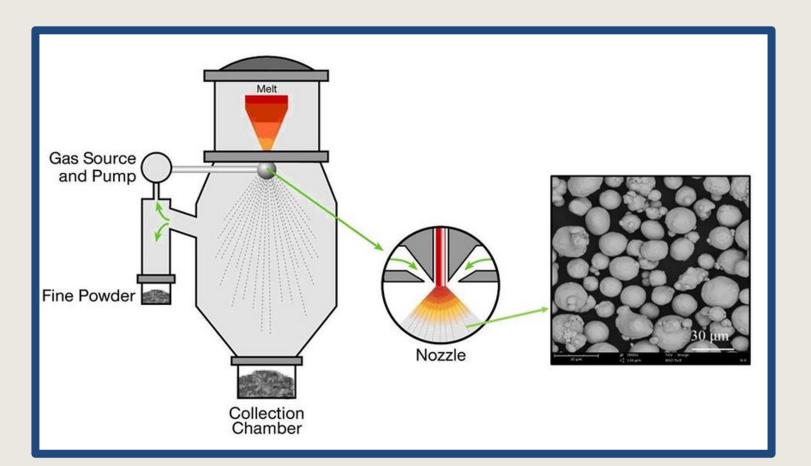
Iron is widely accessible globally and affordable in the current market.


RECYCLABLE

Electrolysis research can lead to proper recyclability of iron which can keep the source sustainable. .

How it Works: **Energy Production & Recycling**

- Recycling powered by excess energy produced via renewable energy sources
- Electrolysis (Being researched at Boston University by Professor Uday Pal's Lab)
 - Electricity used to drive the non-spontaneous reaction Ο
 - Returns iron and oxygen gas Ο


4Fe (s) + $3O_2(g) \leftrightarrow 2Fe_2O_3(s)$

Iron Powder: Implementation

- Atomization to manufacture iron powder
- Induction furnaces
 - Converts energy from electricity into heat
 - \circ Does not produce CO₂ or any hazardous waste
- Electrolysis as a recycling method

Iron Powder: Supply Chain

- Dominant mining companies in Brazil and Australia are BHP Billiton, Vale, & Rio Tinto
- 405 and 906 million metric tons of iron ore produced in 2019, respectively
- China consuming 75% of global trade as of 2020
- Challenge: rising cost reliant on China's demand
- Cost increase after COVID-19 pandemic due to oversupply and a halted economy

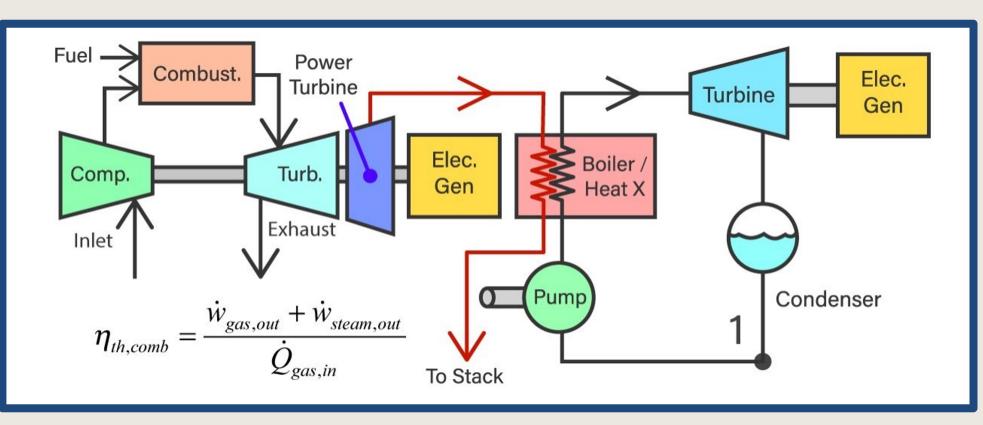
Case Study

9

'Brewery Swinkels'

- Brewery in the Netherlands which utilizes iron powder combustion for heat
- Equipped with a "megawatt" size iron fueled power plant
 - sustainable for the next 20 years
- Spoke with Max Winkel of Team SOLID at Eindhoven University
 - Discussed combustion techniques Ο
 - Sources of iron
 - Collection and electrolysis research 0

Swinkels family brewers


Heat Cycle

11

From Thermal Energy to Electricity: Heat Cycle

- Combined Brayton-Rankine Cycle
- Chubu Electric Power Co., Inc. and Toshiba Energy System & Solutions Corporation
 - Thermal power plant
 - 63.08% efficiency (2017)

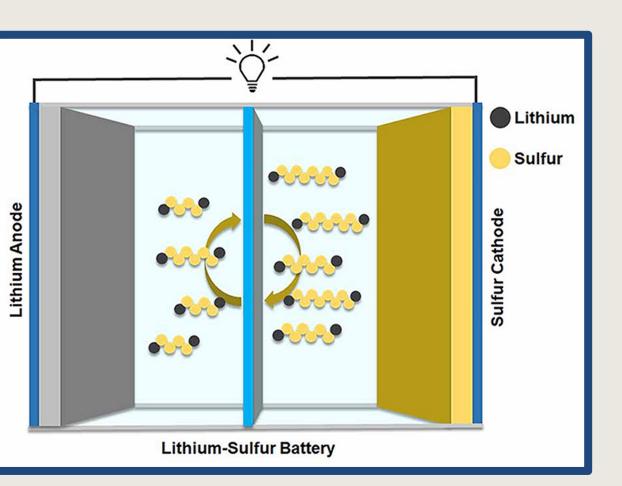
From Thermal Energy to Electricity: Challenges

- Rust
 - Corrosion Ο
 - \circ Clogging \rightarrow reduce heat transfer, slow flow rate
- Burns at temperatures up to 1976°C theoretically and over 1830°C experimentally
 - Material needs to withstand
 - Particle agglomeration (12-18% eff. loss at electrolysis)
- **Full combustion**

From Thermal Energy to Electricity: Solutions

- Material selection: quartz tube burner
- Condensation & temperature management
- Fluidized mixture with 4-part apparatus: reservoir, pinch valve, ejector, scale
- Renewable Iron Fuel Technology (RIFT) from Team SOLID: iron fuel boiler for testing in Helmond, Netherlands near Eindhoven

Batteries


15

Batteries: **Energy Storage Source**

- Lithium sulfur batteries
 - Most promising alternative to a batteries on the market
- University of Michigan Lithium sulfur batteries research
 - Elements used together are quadruple the energy capacity of a typical battery
 - Can withstand both extreme cold and hot temperatures
 - 10 year lifespan
- Projected to be in the market as soon as 2024

BATTERIES

Batteries:

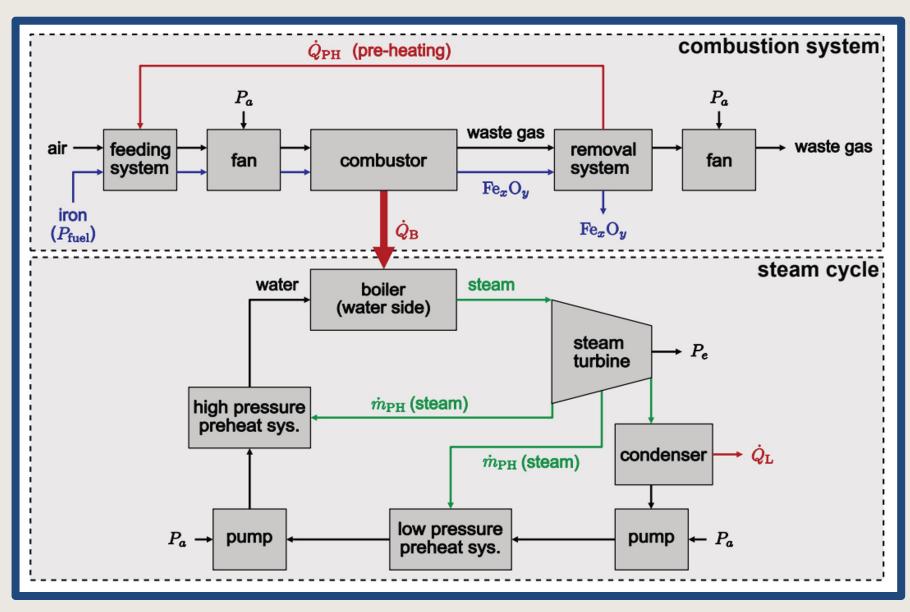
Supply Chain

- Four main stages: raw material extraction, raw material processing, cell component production, and battery pack production
- China produces three quarters of all current lithium-ion batteries
 - 70% of cathode & 85% of anode global capacity
- Arising issues:
 - Human rights abuses
 - Changing trade alliances between individual countries
 - Supply impacted by geopolitics
 - Corporate consolidation

Power Plants

Airport Implementation

- Plan locations based on current land use in the US
 - 5,000 public airports and 14,400 private airports in the US
 - Largest international airports will be prioritized
- Ground transportation of batteries with electric trucks
 - eCascadia Freightliner, Tesla, General Motors, etc. are developing electric trucks
- Consistently have additional batteries at airports in order to supply flights


Retrofitting Coal-Fired Power Plants: Challenges

 \rightarrow Simulation of 800 MW coal-fired power plant

- Clogging
- Iron powder more dense than bituminous coal but similar to lignite
- High temperature difference between high- and

intermediate-pressure section

Retrofitting Coal-Fired Power Plants: Solutions

- Cleaning and filtering system (cloth or magnetized filters)
- Particle size: 10-20 microns based on kinetics and velocity in hopper
- Biflux heat exchanger

Retrofitting Coal-Fired Power Plants: Benefits

- 2.3% higher efficiency due to high melting point of iron (less fouling)
- Existing denitrification system for possible NOx emissions
- Much smaller capital investment

Surrounding Factors

Surrounding Factors

SOCIAL FACTORS

- Education & public awareness
- Consumer demand

BOSTON

UNIVERSIT

• Accessibility & convenience

POLITICAL FACTORS

- Timeline of fuel transition
- Commitment to
 - transitioning
- Private companies
- Airlines
- Job generation (~14 million)
- Job loss (~5 million)

ECONOMIC FACTORS

- Fossil fuel convenience vs sustainability of iron powder
- Iron Powder:
 - Recyclable
 - Releases 7 MJ/kg
 - o ~\$0.06/lb (\$0.12/kg)

Environmental Impacts

Environmental Impacts

PROS	
• Capturing of the solid oxide is easier to manage	• Iron powder &
• Closed loop reaction	Closed loop rea
\circ little to no waste due to recyclability	 Can disrupt
 no CO2 byproduct 	

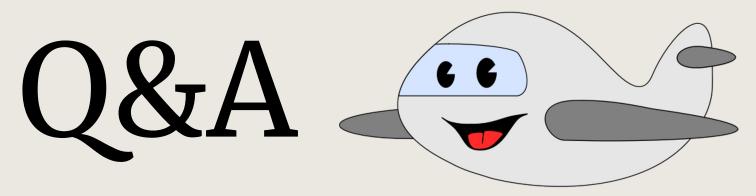
• Releases of Jet A, JP-5, and JP-8 are not required to be reported under the Small Airplane Aviation

Act (SARA)

CONS

- iron oxide nanoparticles
- action
- t the health &

Conclusions


- Iron powder as a fuel is a cyclical process: return on investment
- Developing this technology by 2050 is realistic
- Changes to be made
 - \circ Social \rightarrow education & climate awareness
 - Political \rightarrow support from political entities & job increases in renewable energy Ο
 - Economical \rightarrow increase demand for faster advancement Ο
 - Technical \rightarrow iron fuel boilers brought to the commercial market; iron fuel plants implemented Ο with transportation between airports

THANK YOU!

