



# California State Polytechnic University, Pomona

College of Engineering, Aerospace Engineering Department



# **Aero-Quake Emergency Response Network**

# **Team Rumble Ready Members:**



Team Lead: Krishi Gajjar Senior Aerospace Engineering

Junaid Bodla Senior Aerospace Engineering

Leara Dominguez Senior Aerospace Engineering



Deputy: Jordan Ragsac Senior Aerospace Engineering

Gerald McAllister III Senior Aerospace Engineering

Nicole Xie Senior Aerospace Engineering

# **Faculty Advisor:**

Mark Gonda

Adjunct Professor California State Polytechnic University, Pomona, Aerospace Engineering



# NASA's Gateways to Blue Skies Competition Advancing Aviation for Natural Disasters



| l. –                              | Table of Contents                                                                |  |  |
|-----------------------------------|----------------------------------------------------------------------------------|--|--|
| Ι.                                | Table of Contents vi                                                             |  |  |
| II.                               | Proposal Compliance Matrix vii                                                   |  |  |
| III.                              | List of Figuresix                                                                |  |  |
| IV.                               | List of Tablesx                                                                  |  |  |
| V.                                | List of Acronymsxi                                                               |  |  |
| 0.                                | Abstract/Summary xii                                                             |  |  |
| 1.0                               | Situational Assessment and Concept of Operations (CONOPs) Description1           |  |  |
| 1.1                               | Earthquake Background1                                                           |  |  |
| 1.2                               | Use Case1                                                                        |  |  |
| 1.3                               | Understanding General Emergency Response Procedure1                              |  |  |
| 1.4                               | Concept of Operations (CONOPs)2                                                  |  |  |
| 1.5                               | Aero-Quake Emergency Response Network (AQERN) System of Systems2                 |  |  |
| 1.6                               | Analysis of Alternatives                                                         |  |  |
| 2.0                               | Implementation Analysis3                                                         |  |  |
| 2.1                               | Overall Analysis of Integration Approach4                                        |  |  |
| 2.2                               | Simplicity4                                                                      |  |  |
| 2.3                               | Cost and Return in Investment4                                                   |  |  |
| 2.4                               | Support System Requirements5                                                     |  |  |
| 2.5                               | Connectivity Constraints5                                                        |  |  |
| 2.6                               | Limitations Posed by Environmental Conditions5                                   |  |  |
| 2.7                               | Expected Improvement Over Existing Practices6                                    |  |  |
| 2.8                               | Interoperability with Existing People, Organization, Solutions, and Technologies |  |  |
| 3.0                               | Pathway to Implementation by 20357                                               |  |  |
| 3.1                               | Timeline to Implementation7                                                      |  |  |
| 3.2                               | Technology Readiness Level Progression7                                          |  |  |
| 3.3                               | Training8                                                                        |  |  |
| 3.4                               | Barrier Analysis8                                                                |  |  |
| 3.5 (                             | Customer/Stakeholder Operational Integration9                                    |  |  |
| 4.0                               | Compelling Key Findings9                                                         |  |  |
| 5.0                               | Expanded Analyses Summary10                                                      |  |  |
| Appendix A: Figure ReferencesA    |                                                                                  |  |  |
| Appendix B: System Trade StudiesC |                                                                                  |  |  |
| Append                            | dix C Cost CalculationsH                                                         |  |  |
| Referei                           | ncesI                                                                            |  |  |





# II. Proposal Compliance Matrix

| Req<br>ID | Requirement                                                                                                                                                                                                                                                                                                                                                    | Compliance? | Section(s) | Page(s) |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------|
| SA1       | Select one type of natural disaster and one phase<br>of disaster management to focus on (preparation,<br>response, or recovery)                                                                                                                                                                                                                                | Yes         | 1.0        | 1       |
| SA2       | For the selected type of natural disaster, assess its<br>current impacts, the people involved in the<br>disasters' management, and aviation-related<br>operations and technology currently utilized.                                                                                                                                                           | Yes         | 1.1,1.3    | 1       |
| SA3       | Clear CONOPs description, demonstrating thorough<br>and proper research, practical applications, and<br>realistic assumptions.                                                                                                                                                                                                                                 | Yes         | 1.4        | 2       |
| SA4       | Team defined use case/opportunity for<br>impact/aviation related systems identified to<br>address the opportunity.                                                                                                                                                                                                                                             | Yes         | 1.2        | 1       |
| SA5       | Consider the operational context surrounding the<br>system, i.e., those impacted by the proposed<br>technology, decisions made from information<br>collected (and who makes the decision), what part<br>of the process is the technology improving, etc.                                                                                                       | Yes         | 1.4, 2.7   | 1,6     |
| IA1       | Clear depiction of systems integration approach, including an understanding of integration factors.                                                                                                                                                                                                                                                            | Yes         | 3.0-3.5    | 7-9     |
| IA2       | Include trades on: simplicity, cost/ROI, support<br>system requirements, connectivity restraints,<br>limitations from environmental conditions,<br>expected improvements over existing practices,<br>interoperability with existing people, operations,<br>technologies, and solutions.                                                                        | Yes         | 2.0-2.8    | 4-7     |
| TB1       | Chart a path to deployment: Conduct analysis of<br>the pathway and timeline to implementation for<br>the system(s) by 2035, including, but not limited to:<br>technology readiness levels, training,<br>customer/stakeholder operational integration, and<br>opportunity/barrier analysis<br>(technology/development, policy and regulations,<br>risks, etc.). | Yes         | 3.0-3.5    | 7-10    |
| KF1       | Final paper makes a compelling case for concept implementation.                                                                                                                                                                                                                                                                                                | Yes         | 4.0        | 10      |
| AS1       | Highlight clear changes made between proposal and final technical paper.                                                                                                                                                                                                                                                                                       | Yes         | 5.0        | 11      |
| L1        | Proposal is 8-10 pages excluding Cover Page,<br>Abstract, Table of Contents, and Appendices.                                                                                                                                                                                                                                                                   | Yes         |            |         |
| L2        | Reads as a stand-alone document.                                                                                                                                                                                                                                                                                                                               | Yes         |            |         |
| L3        | Single spaced and single column.                                                                                                                                                                                                                                                                                                                               | Yes         |            |         |

# NASA's Gateways to Blue Skies Competition Advancing Aviation for Natural Disasters



| L4   | Standard 1" margins all around.                                                                                                                                     | Yes |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| L5   | Uses a common font (i.e., Times, Times New<br>Roman, Helvetica, or Arial for text, Symbol for<br>mathematical symbols and Greek letters)                            | Yes |  |
| L6   | Front size should be either 11 or 12 put (including in all tables, charts, and graphs).                                                                             | Yes |  |
| L7   | Monday May 13, 2024 9 pm PST                                                                                                                                        | Yes |  |
| IG1  | Creative use of color, graphics, images, photos                                                                                                                     | Yes |  |
| IG2  | Well laid out components that clearly overview the opportunity space/team-determined use case in the selected in the selected natural disaster and management phase | Yes |  |
| IG3  | Covers current solution, proposed solution, and projected improvements                                                                                              | Yes |  |
| IG4  | Conceptualized approach to deployment (timeline, opportunity, and challenges), including references                                                                 | Yes |  |
| IG5  | The infographic is standalone (including acronyms)<br>and simple to understand (no heavy technical<br>jargon)                                                       | Yes |  |
| IG6  | Representative of the findings of the final report                                                                                                                  | Yes |  |
| IG7  | Monday May 13, 2024, 9 pm PST                                                                                                                                       | Yes |  |
| IG8  | 300 ppi                                                                                                                                                             | Yes |  |
| IG9  | 100 mb size maximum                                                                                                                                                 | Yes |  |
| IG10 | Using "California State Polytechnic University,<br>Pomona - 2024 Blue Skies Infographic" as the name<br>of the file.                                                | Yes |  |
| IG11 | Small team identifier in bottom left hand (ie:<br>university name, team name)                                                                                       | Yes |  |
| IG12 | No outside links are permitted except for<br>references                                                                                                             | Yes |  |
| IG13 | Must be uploaded as pdf                                                                                                                                             | Yes |  |
| IG14 | Horizontal                                                                                                                                                          | Yes |  |
| IG15 | 9600 x 7200 pixels (48" x 36") size                                                                                                                                 | Yes |  |
| IG16 | Infographic should have a title                                                                                                                                     | Yes |  |
| 01   | High resolution graphic of concept with minimum dpi of 300                                                                                                          | Yes |  |
| 02   | 2-3 sentence synopsis of 600 characters                                                                                                                             | Yes |  |





# III. List of Figures

| Figure 0.1: Aero-Quake Procedure                                                             | xii |
|----------------------------------------------------------------------------------------------|-----|
| Figure 1.4.1: The AQERN CONOPs image includes Searchlight, Hermes, and LifeStar sharing data | . 2 |
| Figure 2.1.1: Current + AQERN Operation                                                      | .4  |
| Figure 2.3.1: Break-Even Analysis                                                            | . 5 |
| Figure 3.1.1: Aero-Quake Timeline to Implementation by 2035                                  | .7  |
| Figure 3.4.1: Risk Cube                                                                      | . 8 |
| Figure A.1: Earth's Tectonic Plates                                                          | .A  |
| Figure A.2: NASA Technology Readiness Level Chart                                            | .В  |
| Figure B.1: Visualization of Communication and Power Feasibility                             | .D  |
| Figure B.2: Roadmap of future solid-state battery concepts                                   | . E |
| Figure C.1: Inputs used for cost calculations                                                | .н  |
| Figure C.2: Rand Corp. Costing Equations                                                     | .н  |





# IV. List of Tables

| Table 1.3.1: Assumptions derived from current emergency response procedures | 1 |
|-----------------------------------------------------------------------------|---|
| Table 1.5.1: Specification Table for Searchlight, Hermes, and LifeStar      | 2 |
| Table 1.5.2: Summary of System Design Trade studies                         | 3 |
| Table 2.3.1: Cost Table                                                     | 4 |
| Table 2.6.1: Mitigation of Effects from Environmental Conditions            | 6 |
| Table 2.7.1: Expected Improvements from AQERN                               | 6 |
| Table 3.2.1: Technology Readiness Levels Progression till 2035              | 8 |
| Table 3.4 Risk Analysis                                                     | 8 |
| Table 3.5.1: AQERN Scalability Based off of FEMA Deployment                 | 9 |
| Table 4.1: AQERN Key Findings                                               | 9 |
| Table 5.1: Changes from Original Proposal1                                  | 0 |
| Table A.1: List of Technologies Taken from AQERN First Proposal             | С |
| Table B.1: Potential Antenna Values for a Responder Wi-Fi Network           | D |
| Table B.2: Searchlight Weight Breakdown                                     | D |
| Table B.3: Fabric Trade Study                                               | Е |
| Table B.4: Hermes propulsion trade study                                    | F |
| Table B.5 Hermes Payload Sizing Table                                       | F |
| Table B.6: Hermes Propeller Trade Study                                     | F |
| Table B.7: Weight and Monetary Cost of Detecting Various Gasses             | G |
| Table C.1: AQERN vehicle production numbers                                 | н |





# V. List of Acronyms

|        | · · · · · · · · · · · · · · · · · · ·          |
|--------|------------------------------------------------|
| ACDM   | African Center for Disaster Management         |
| ADRC   | Asian Disaster Reduction Center                |
| AI     | Artificial Intelligence                        |
| AQERN  | Aero-Quake Emergency Response Network          |
| BOO    | Base of Operations                             |
| Comms  | Communication System                           |
| CONOPs | Concept of Operations                          |
| FAA    | Federal Aviation Administration                |
| FEMA   | Federal Emergency Management Agency            |
| Lidar  | Light Detection and Ranging                    |
| ML     | Machine Learning                               |
| NATO   | North Atlantic Treaty Organization             |
| NLE    | National Level Exercise                        |
| SAR    | Search and Rescue                              |
| TLM    | The Last Mile                                  |
| TRL    | Technology Readiness Level                     |
| UAS    | Uncrewed Aerial System                         |
| UHF    | Ultra High-Frequency (radio)                   |
| UKISAR | United Kingdom International Search and Rescue |
| USAR   | Urban Search and Rescue                        |
| VHF    | Very High Frequency (radio)                    |
|        |                                                |





# 0. Abstract/Summary

This proposal responds to NASA's 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters Competition by identifying a new emergency response aviation architecture for earthquakes that can be implemented by 2035. Three major problems in earthquake disaster response are lack of communication, hinderance of supply delivery due to destroyed road infrastructure, and locating victims in the critical 72-hour survival window. To address these challenges, Team Rumble Ready proposes the Aero-Quake Emergency Response Network (AQERN): a scalable architecture for earthquake disaster response. The architecture is comprised of three aviation elements — Searchlight, Hermes, and LifeStar — which address communication with responders, supply delivery, and mobile search-and-rescue (SAR) operations respectively as seen in Figure 0.1 below. Searchlight, a lighter-than-air vehicle, enables wireless communication between different response teams and bases of operations (BOO) about points of interest and their needs. Hermes, a mixed- fixed wing drone, can respond to those needs by delivering emergency supplies while using aerial imaging with artificial intelligence (AI) for operational independence. LifeStar is a small portable drone encompassed by a protective spherical cage used to identify survivors and hazards in environments too risky for rescuers.

Since the original proposal, further research, trade studies, and feasibility assessments on the integration of this architecture and its improvements to current response procedures have been performed. Operations, customer integration, cost, and sizing of the systems have been refined. Feasibility studies on individual system duration, risk mitigations due to environmental conditions and technology failure were done as well. AQERN considers the concerns of search and rescue teams by assessing current procurement procedures and ensuring AQERN involves minimal change in current response procedures. Furthermore, AQERN is compatible with current technologies while remaining modular for integration of future technology. Investing in this architecture would be about 0.9% of the world's annual disaster response budget while saving 160,000 lives in the first 10 years. By considering the integration of both existing and developing technologies into innovative applications for earthquake disaster response, AQERN enables a planned operational implementation into current emergency response procedures that is viable by the year 2035.



Figure 0.1: Aero-Quake Procedure





# 1.0 Situational Assessment and Concept of Operations (CONOPs) Description

Earthquakes cause major damage to infrastructure and communications, hindering search and rescue operations. The Aero-Quake Emergency Response Network, a system of systems, uses three interoperable systems to solve responder communication infrastructure, supply logistics, and victim and hazard's location to aid victims in the first critical 72 hours.

### 1.1 Earthquake Background

The earth has seven major tectonic plates and countless fault lines that may slip at any time and cause an earthquake without warning [1]. Although earthquakes make up only about 8% of all natural disasters worldwide, they have caused 58% of all natural disaster related deaths in the 21<sup>st</sup> century [2][3]. This destructive nature is a building issue as over 1.5 billion people live in earthquake prone areas seen in black and gray in Appendix A and the population in these areas is growing faster than the global average [4].

### 1.2 Use Case

Response challenges identified from the devastating 2023 Turkey-Syria earthquakes include delayed delivery of essential aid and supplies, disrupted communications, and locating victims under rubble [5,6,7]. Despite responders pulling over 8,000 survivors from the rubble, the deadly quake claimed the lives of over 53,000 people [8,9]. Since many of these deaths are from conditions like hypothermia, fires, injuries, tsunami backwash, chemical spills, and diseases, the goal is to increase the speed of earthquake response [3]. Furthermore, although some victims were rescued alive after being trapped for 10 days, the typical survival rate for those trapped longer than three days drops to between 5-10% [10,11].

To increase the number of survivors pulled alive from rubble and provide them necessary aid in the first 72 hours, an aviation-based architecture is needed that can 1) establish a strong communication network, 2) rapidly disperse critical supplies, and 3) collect and distribute data to aid victims faster.

### 1.3 Understanding General Emergency Response Procedure

The United States organization that coordinates disaster response is the Federal Emergency Management Agency (FEMA). It oversees 28 task forces comprised of 70 specialists. These specialists are certified for urban search and rescue (USAR) and may have expertise in fields such as rescue, logistics, communications, medical, structures, and heavy equipment [12]. In the event of a disaster, FEMA will dispatch an appropriate number of task forces to the affected area. Other search and rescue teams, deployed by local and state departments, nonprofit organizations, and the military often also join operations.

On-site, these teams first establish a BOO to conduct business for up to 21 days under the assumptions listed in Table 1.3.1. As of 2024, USAR teams use a wide variety of technologies such as thermal imaging, satellite communication, aerial mapping, microwave heartbeat finders, and drones [13,14]. However, uncrewed aerial system (UAS) use is infrequent as there are no UASs that are federally approved for use in USAR, and no UAS is provided as a federal resource as they do not appear on the FEMA Approved Equipment Cache List. However, helicopters or aircraft sourced from local agencies are often used for initial damage assessment of the area.

| Assumptions                                                       |                                                               |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| • No power, communication towers, internet.                       | <ul> <li>BOO located outside of the disaster area.</li> </ul> |  |  |
| No aerial transportation of fuel.                                 | <ul> <li>Airspace primarily commanded by military.</li> </ul> |  |  |
| • Fuel can be sourced onsite.                                     | • Transported supplies must fit in C-130Js.                   |  |  |
| • Rescuers work in 12 hour shifts.                                | <ul> <li>Heavy machinery can be sourced onsite.</li> </ul>    |  |  |
| <ul> <li>Individual response task forces must be self-</li> </ul> | • Emergency personnel can fly with Certificate of             |  |  |
| sufficient for a 21-day deployment.                               | Waiver/Authorization.                                         |  |  |
| • Ultrahigh frequency (UHF) radio is used within                  | BOO and sub-teams on missions are too far to                  |  |  |
| individual response teams.                                        | communicate with each other via radio.                        |  |  |

### Table 1.3.1: Assumptions derived from current emergency response procedures.





# 1.4 Concept of Operations (CONOPs)

The Concept of Operations (CONOPS) for Aero-Quake (Figure 1.4.1) uses three elements to solve a multi-



Figure 1.4.1: The AQERN CONOPs image includes Searchlight, Hermes, and LifeStar sharing data.

level problem. Searchlight surveys the site generating a map which is then hosted on a server for responders to mark and give information about points such as collapsed hospitals, fires, victim locations, etc. Hermes, stationed at BOOs and supply stations, readily provides autonomous delivery of critical supplies to rescuers based on requests transmitted through searchlight. At the site, responders use LifeStar as a tool to search for hazards and victims in spaces that are risky for rescuers. Rescuers can upload information/make requests to the BOO from Searchlight as needed.

# 1.5 Aero-Quake Emergency Response Network (AQERN) System of Systems

AQERN's is made up of the three systems and technologies seen in Table 1.5.1. Since the first proposal, several trade studies (summarized in Table 1.5.2 and Appendix B) including technologies and sizing were performed for each system in AQERN.

| Parameter <u>Searchlight</u> <u>Herm</u> |                                                                                                                  | <u>Hermes</u>                                                 | <u>LifeStar</u>                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|
| lsometric View                           |                                                                                                                  |                                                               |                                                                      |
| L x W x H                                | 230' x 36' x 34'                                                                                                 | 5.8' x 10' x 1.6'                                             | Ø1.6'                                                                |
| Weight                                   | 33,000 lbs., 65 lbs. payload                                                                                     | 75 + 25 lbs. payload                                          | 6.2 lbs.                                                             |
| Duration                                 | 3 days                                                                                                           | 8 hr.                                                         | 45 min.                                                              |
| Technologies                             | Wi-Fi, VHF/UHF radio repeater,<br>Satellite Connection,<br>Solid State Batteries (SSBs)<br>Thin Film Solar Cells | AI Full Autonomy,<br>Quiet Propellers,<br>VTOL, LiDAR<br>SSBs | Camera, Speaker,<br>Microphone,<br>Gas detection, LED<br>Light, SSBs |
| Benefit to                               | Initial survey                                                                                                   | Supply Delivery                                               | Hazards & Victim                                                     |
| Operations                               | Communication Relay                                                                                              | Detailed survey                                               | Location                                                             |
| Unit Flyaway Cost                        | \$18,298,000                                                                                                     | \$11,912                                                      | \$1,508                                                              |

#### Table 1.5.1: Specification Table for Searchlight, Hermes, and LifeStar.





| able 1.5.2: Summary | y of Sv | stem Desig | n Trade studies |
|---------------------|---------|------------|-----------------|
|                     |         |            |                 |

| Design point                                                                          | Trade study         | Results                                                           |  |  |  |
|---------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|--|--|--|
|                                                                                       | Searchlight         |                                                                   |  |  |  |
| Propulsion                                                                            | Electric vs. Diesel | Electric is unrealistic with a battery estimate of 107,000 lbs.   |  |  |  |
| Communication 5G vs. Wi-Fi A combination of Wi-Fi, UHF and VHF maximizes universal us |                     | A combination of Wi-Fi, UHF and VHF maximizes universal usage     |  |  |  |
| Technology                                                                            | vs. UHF/VHF         | and reduces antenna number from 25 to 12                          |  |  |  |
| Enduranco                                                                             | Endurance ve cost   | Each day of endurance past 3 costs ~\$50 million/day.             |  |  |  |
| Endurance                                                                             | Endurance vs. cost  | This is a great cost for limited benefit.                         |  |  |  |
|                                                                                       |                     | Hermes                                                            |  |  |  |
| Pusher motor                                                                          | Electric vs. Diesel | Using diesel increases weight by 6lbs. and endurance by 2h.       |  |  |  |
| Dayload size                                                                          | Payload vs UAS      | 25lb. encompasses most items used in the first 27 hours.          |  |  |  |
| Payload Size                                                                          | size                | Additional payload capacity increases system weight by 10 lbs.    |  |  |  |
| Broneller type                                                                        | Conventional vs.    | Quiet toroidal propellers were selected for 10-15dBA noise        |  |  |  |
| Propener type                                                                         | quiet propeller     | reduction with 2-4% efficiency increase                           |  |  |  |
| LifeStar                                                                              |                     |                                                                   |  |  |  |
| Gas datastian                                                                         | Detected gasses     | Detecting CO2, CO and hydrocarbons with a module for more         |  |  |  |
| Gas detection                                                                         | vs. cost            | specific sensors added <1oz. of weight                            |  |  |  |
| Bropeller type                                                                        | Conventional vs     | Use of toroidal propellers increased endurance by 2 min for no    |  |  |  |
| Рюренет туре                                                                          | quiet               | additional weight and minimized communication interference        |  |  |  |
| Camera type                                                                           | Camera type vs.     | Introduction of a thermal camera improves LifeStar's night vision |  |  |  |
| camera type                                                                           | weight              | and dust penetration abilities while adding only 0.7 oz           |  |  |  |

#### **1.6** Analysis of Alternatives

In Table 1.6.1, current USAR methods of handling communications, supplies, and rescues are summarized along with current alternatives and the proposed AQERN solution. Some notable alternatives are portable cell towers and robotics. Portable cell towers were used when responding to the Turkey-Syria earthquake but were targeted at contacting family, slow to launch, and had limited range [14]. Ground based robotics have seen limited use in disaster response but are not widespread due to issues adapting to all terrain.

| Technology       | Current Solution                                                                            | Current Alternatives                                                        | AQERN's Projected Solution                                                                      |  |
|------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Communications   | <ul><li>UHF /VHF radios</li><li>Satellite phones</li></ul>                                  | Portable cell towers                                                        | <ul> <li>Aerial imaging &amp;<br/>communication hub</li> </ul>                                  |  |
| Supply Support   | <ul><li>Trucks/Motorcycles</li><li>People on ground</li></ul>                               | <ul><li>Helicopter</li><li>Pilot drones supply</li></ul>                    | <ul> <li>Short turnaround time for<br/>aid delivery on request</li> </ul>                       |  |
| Rubble Searching | <ul> <li>Heavy equipment</li> <li>Sonar/sound mics</li> <li>Specialized rescuers</li> </ul> | <ul> <li>Firefighting, rescue,<br/>and live streaming<br/>robots</li> </ul> | <ul> <li>Hazard/victim locating ball<br/>drone unobstructed by<br/>ground conditions</li> </ul> |  |
| Aerial Support   | <ul> <li>Helicopters/planes<br/>with cameras</li> </ul>                                     | VTOL drones                                                                 | <ul><li>Lighter-than-air vehicle</li><li>Mixed-wing drone</li></ul>                             |  |

#### Table 1.6.1: Analysis of Alternatives to AQERN

### 2.0 Implementation Analysis

AQERN emphasizes simplicity in operation, maintenance, and deployment to enable a rapid disaster response and integration in existing FEMA response procedures [Section 2.2, [15]]. The use of line replaceable parts such as batteries and propellers for efficient deployment and repair, stationing Searchlight near locations prone to earthquakes, and incorporating intuitive operating procedures such as phone app access and standard quadcopter controls ensures that AQERN will be swiftly responsive and integrated into emergency protocols.





# 2.1 Overall Analysis of Integration Approach

Aero-Quake operates as an addition to current emergency response procedures, as shown in Figure 2.1.1.



Figure 2.1.1: Current + AQERN Operation

# 2.2 Simplicity

Aero-Quake maintains simplicity within the maintenance, interface, deployment, and technologies used. Searchlight will be stationed within U.S. global military bases to reduce international integration hurdles. Each of the technologies will be implemented with some existing technologies and modular parts so that development and repair process is quick and inexpensive. Requests for supplies from Hermes will be made through a mobile app to maximize ease of access for all responders. LifeStar's low weight and cage enables portability so it can easily be clipped bag straps for transportation. Each of the systems can be integrated into the current FEMA response procedure without altering operations and can perform independently of the other elements. Fitting into FEMA guidelines allows implementation into international procedures as many foreign entities work alongside FEMA or follow their guidelines.

# 2.3 Cost and Return in Investment

Materializing Aero-Quake involves development and production costs for the three vehicles. The cost, as presented in Table 2.3.1, was calculated using the Rand Corporation costing method which considers the quantities to be produced, max flight speeds, and the weights of the vehicles [16]. These costs add up to a total investment of \$1.3 billion (\$2024). The net present value, using a 12% hurdle rate, will break-even after 5 years and reach a 15% profit margin after 8 years, as seen below in Figure 2.3.1. At the end of a 10-year production period, the net present value is expected to reach \$300 million (\$2024).

|                      | Searchlight     | Hermes       | LifeStar     |
|----------------------|-----------------|--------------|--------------|
| Production Units     | 50              | 4,000        | 10,000       |
| Airframe Engineering | \$180,620,000   | \$1,926,000  | \$344,910    |
| Development Support  | \$18,243,000    | \$224,750    | \$34,953     |
| Flight Test Ops      | \$21,225,000    | \$14,863,000 | \$12,021,000 |
| Tooling              | \$158,900,000   | \$2,751,600  | \$608,240    |
| Manufacturing Labor  | \$451,360,000   | \$32,571,000 | \$10,740,000 |
| Quality Control      | \$38,052,000    | \$2,745,900  | \$905,430    |
| Material & Equipment | \$132,170,000   | \$9,579,300  | \$2,827,700  |
| Engine Cost          | \$134,400,000   | N/A          | N/A          |
| Total Cost           | \$1,135,000,000 | \$64,661,000 | \$27,482,000 |
| Unit Sale            | \$27,239,000    | \$19,398     | \$3,298      |
| Unit Flyaway         | \$18,298,000    | \$11,912     | \$1,508      |

### Table 2.3.1: Cost Table





The magnitude of the investment fits well within the global disaster preparedness system market size estimation of \$160 billion (2022), which is expected to grow 8.5% annually through 2030 [17].



Figure 2.3.1: Break-Even Analysis

# 2.4 Support System Requirements

For logistics, Searchlight would be stationed within U.S. military bases abroad within areas that have high likelihood for earthquake occurrence such as Japan, Indonesia, India, Pakistan, Turkey, and San Francisco [18]. It can be assembled and deployed from the military base straight to the disaster sight. Hermes is designed to be stored alongside other task force equipment within cashes. Hermes will be transported alongside other task force equipment by FEMA standard; loaded into 463L pallets and transported by aircraft or truck depending on proximity to the earthquake [19]. LifeStar's light frame enables it to be transported along with search and rescue teams attached to their backpacks. Searchlight's technical support entails assistance during deployment and launch to ensure seamless startup. Real-time monitoring and control capabilities would enable tracking of the system's status and telemetry data [20]. The autonomous functionality of Hermes enables it to operate with minimal support. It will however require personnel to load the payload, perform repairs, and monitor its flight condition. LifeStar requires minimal technical support due to its robust design and user-friendly operation. Occasional support may be needed for hardware maintenance, software updates, and remote monitoring, but these tasks can be efficiently managed with a small team.

# 2.5 Connectivity Constraints

FEMA Chief of Tactical Emergency Communications stated in an interview with *The Last Mile*, "FEMA is able to support responders with satellite phones and data terminals along with mobile radio networks" [21]. As a result, AQERN will incorporate a combination of Wi-Fi, UHF, VHF, and satellite in its approach to communication. Searchlight will use Wi-Fi signals to connect directly to rescuers and allow them to access the information sharing website. In addition to rescuers, it will communicate to nearby Hermes drones in via UHF and VHF radio. UHF will be the primary form of connection and operates at low band 375-512 MHz to high band 764-870 MHz. VHF will be used when there is UHF interference and ranges from low band 49-108 MHz to high band 169-216 MHz [22]. Searchlight uses these UHF and VHF antennas along with its line of sight as an aerial system to repeat radio signals in the area and extend the effective range of existing radio communication systems. Finally, it will connect to its contingency remote-control station via satellite to ensure it can always be controlled regardless of range. Hermes drones will be able to connect directly to their monitoring stations at the BOO through UHF and VHF radio with antennas intended for beyond visual line of sight communication [23]. LifeStar drones will connect to the rescuers remote control through UHF radio for greater penetration through walls and obstacles.

# 2.6 Limitations Posed by Environmental Conditions

In the aftermath of an earthquake there are several potential environmental hazards to aviation-based technologies. For Searchlight and Hermes these hazards include strong wind, rain, and dust clouds. In the case of LifeStar, falling debris, obstacles, and dust clouds are the primary hazards. AQERN addresses all the individual hazards with various technologies for mitigation, summarized in Table 2.6.1.





| <b>C</b>    |                         |                  |                                        |
|-------------|-------------------------|------------------|----------------------------------------|
| System      | Environmental           | Impact           | lechnologies for Mittigation           |
|             | Conditions              |                  |                                        |
| Searchlight | Strong Winds, Adverse   | Compromises      | Stabilization System,                  |
|             | Weather                 | flight stability | Ground Anchor,                         |
|             |                         |                  | Predictive Weather Algorithms [25]     |
| Hermes      | High Winds, Adverse     | Alters delivery  | Navigation System, Environmental       |
| × ×         | Weather, Dust Clouds    | accuracy         | Monitoring Sensors, Adaptive Flight    |
|             |                         |                  | Algorithms [26]                        |
| LifeStar    | Obstacles,              | Hinders ability  | Dust resistant covers for gas sensors, |
|             | Dust Clouds,            | to navigate and  | remote monitoring, protective cage,    |
|             | Falling Debris, Adverse | locate people    | LED light for lowlight/no light        |
|             | Weather, Low Light      |                  | operation navigation                   |
|             | Conditions              |                  |                                        |

# 2.7 Expected Improvement Over Existing Practices

As stated in Section 1.2, the average survival rate drastically drops after the first 72 hours. Thus, challenges of inoperable communications, damaged supply infrastructure, and difficulty locating victims need to be addressed quickly. Searchlight will relay information between different emergency response teams, enabling communication during the 12 hours of operation. This allows rescuers and organizers a greater sense of situational awareness at all levels, enabling more informed decision making. After considering four different cities affected by the 2023 earthquake in Turkey and Syria, the average time for a truck to make a delivery from a probable BOO location to the city center was between 13 and 24 minutes seen in Table 2.7.1 [27]. Hermes can cover the same distance in 6-9 minutes without relying on roads, enabling faster and more consistent delivery to rescuers. LifeStar uses gas detection sensors and a camera so rescuers can safely and quickly find and analyze the locations of people and dangers both seen and unseen. Table 2.7.1: Expected Improvements from AQERN

| Challenges       | Example                              | Improvement Method     | Time Saved   |
|------------------|--------------------------------------|------------------------|--------------|
| Inoperable       | Nepal 2023 – Communication loss,     | Continuous radio       | 12 hours     |
| communication    | Helicopter Crash [27, 28]            | communication          |              |
| Damage supply    | Turkey and Syria 2023 – Shortage of  | Drone supply delivery  | ~ 13 minutes |
| infrastructure   | medical supplies [29]                |                        | per delivery |
| Difficulty       | Turkey and Syria 2023 – Victims      | Search and rescue tool | < 72 hours   |
| locating victims | buried under rubble for 7+ days [30] |                        |              |

2.8 Interoperability with Existing People, Organization, Solutions, and Technologies

As mentioned in Section 2.5, AQERN supports satellite and mobile radio networks, both of which are currently used in existing response operations during instances of communication loss. In addition, Searchlight supports multi-band radios and bandwidth switches, a solution currently used by FEMA for interconnection of systems [29,31]. This further demonstrates that AQERN can integrate existing FEMA personnel, solutions, and technology into its operations. Additionally, the team reached out to FEMA Emergency Management Specialist Lance Gilmore of the USAR Branch for insight on emergency and task force logistics and operations. In his email, Mr. Lance Gilmore States, "GIS technology...allows the System to...determine the status of critical infrastructure, quickly prioritize target hazards, and assign adequate resources for reconnaissance and search operations." [32]. AQERN's system Searchlight can perform geographic information system (GIS) operations such as store, analyze, and interpret geographic data with its mapping system. Furthermore, its software would be compatible with common USAR products such as





Avenza Maps, Garmin, and SARTopo. In addition, Hermes can perform initial damage assessment upon reaching the disaster area, determining the status of critical infrastructure to provide insight on what emergency response teams can prioritize, and deliver necessary tools like LifeStar for search operations.

### 3.0 Pathway to Implementation by 2035

AQERN outlines a pathway to implementation by 2035 to meet responder needs by using high technology readiness levels, implementing current SAR team operations and FEMA management feedback, and conforming to procurement procedures.

### 3.1 Timeline to Implementation

The timeline in Figure 3.1.1 reflects manufactural, technological, and infrastructural advancements and its forecasted progression into the year 2035. AQERN begins with a manufacturing plan to set up a facility for tooling, initial production, and testing. By the year 2030, AQERN anticipates facility expansion with full-scale production the following year. While some of the technologies AQERN plans to employ are still in development, the team will monitor its progress to ensure availability and reliability by 2035 to continuously incorporate the latest technologies as it advances throughout the years. The Technology Readiness Level (TRL) for each respective technologies are justified in Table 3.2.1. For successful integration into the current infrastructure, AQERN's collaboration with stakeholders and the Federal Aviation Administration (FAA) are essential to acquire the necessary feedback, training and approvals needed to launch AQERN successfully by 2035.



Figure 3.1.1: Aero-Quake Timeline to Implementation by 2035

# 3.2 Technology Readiness Level Progression

AQERN uses technologies with higher TRL levels that will be ready for use by 2035 (Table 3.2.1). Al and ML will be used in Hermes and Searchlight to rapidly analyze images & data, navigate fully autonomously, and support real-time decision making. Thin film solar is used in satellites currently, but their light weight and flexibility makes them good for airship applications while providing continuous power for long response missions. All systems will use SSD batteries for higher energy density. They are also less prone to catching fire, enhance safety, and charge much faster than traditional batteries, reducing downtime. Using LiDAR on Hermes will support AQERN with high-resolution mapping, rapid assessment of inaccessible areas, and provides accurate real-time data of surrounding obstacles. Combined with Al processing this can find



possible ground routes for trucks as well. Finally, using a gas detection sensor on LifeStar will provide early warning for hazardous and flammable gases, assess air quality, and detect human life beneath

### 3.3 Training

rubble via traces of carbon dioxide.

Effective training is essential for the earthquake response operational success of AQERN. Starting from 2026, every two years, AQERN will be actively participating in FEMA's National Level Exercise (NLE)

ATEWAYS

| Technology                | 2024-30 | 2030-35 |
|---------------------------|---------|---------|
| AI, ML [33]               | 6-7     | 9       |
| Quiet propellers [34]     | 7       | 9       |
| Thin-Film Solar [35]      | 6-7     | 9       |
| SSB [36]                  | 4-6     | 8-9     |
| Lidar [37]                | 7-8     | 9       |
| Gas detection sensor [38] | 7-8     | 9       |

[39] During NLE, AQERN joins operational planning and real-world exercises. Searchlight will be integrated into the existing exercise, and the operators and engineers from all parties will learn and practice how to efficiently launch Searchlight. AQERN also offers solutions to streamline operation training. Hermes autonomous flight reduces training time and eliminates the need for a dedicated pilot. Moreover, training times for LifeStar are minimized by using standard quadcopter controls and a user-friendly interface.

### 3.4 Barrier Analysis

Risk identification to mitigate barriers in the implementation of AQERN is crucial. Environmental risks and mitigation were discussed in Section 2.6. Technical risks and their mitigation are discussed in Figure 3.4.1 and Table 3.4. For regulatory barriers, AQERN will work with relevant agencies such as the FAA to establish clear guidelines during procurement. As a civilian emergency response system, AQERN will utilize U.S. military, North Atlantic Treaty Organization (NATO) bases, and other hangars globally in earthquake-prone areas. This setup provides access to advanced technology infrastructure, expertise, and security. However, its dependency on military priorities may limit its responsiveness to civilian needs. Integrating AQERN into these bases requires careful diplomatic efforts, clear distinctions between military and civilian roles, and robust legal frameworks to ensure cooperation without compromising sovereignty or civilian priorities.



# Figure 3.4.1: Risk Cube

#### Table 3.4 Risk Analysis

| Risk                | Mitigation                                                                        |
|---------------------|-----------------------------------------------------------------------------------|
| A: Comms.           | Use a mix of communication channels (satellite, cellular, Wi-Fi) and advanced     |
| Interruption        | antenna technology at lower bandwidths.                                           |
| B: Cyber Threats    | Implement authentication protocols, end-to-end encryption, real-time monitors     |
| C: Wi-Fi Signal     | Weather-resistant design like high-power output, redundant systems such as        |
| Interference        | cellular network.                                                                 |
| D: Battery Fire     | Battery cell temperature management system, physical barriers between cells.      |
| E: Delivery Failure | Improve the algorithm to determine landing locations and ready backup drones.     |
| F: Battery Failure  | More reliable batteries, advanced monitor battery health management.              |
| G: Sensor Damage    | Protective casings for sensors and cameras with filtering and sealing techniques. |
| H: Battery          | Modular battery swaps, use SSBs with higher energy density, implement             |
| Depletion           | efficient battery management that optimizes power usage.                          |





### 3.5 Customer/Stakeholder Operational Integration

Integrating AQERN with emergency stakeholders such as FEMA is started during the system's design phase. FEMA and others alike will form an advisory board and be an integral part of the AQERN development team to determine how the system's capabilities will align with the needs of the emergency response. AQERN will be connected to local emergency services through a ground command center. The data acquisition team will control and monitor the health and performance of Searchlight, Hermes, and LifeStar on the ground in real-time. Stakeholders will continue to provide feedback to AQERN throughout the development and test phases to make sure the operational procedures and responses are effective and timely for real-world situations. The scalability of AQERN was also designed in accordance with FEMA's National Urban Search & Rescue (US&R) Response System which consists of 28 task forces, containing 70 members each that operate within groups of 35 members [40]. The number of teams deployed varies per disaster based on severity, population density, and available resources which AQERN accounts for with Table 3.5 adjusting to however many task force teams are deployed.

| System                                  | Searchlight | Hermes | LifeStar |
|-----------------------------------------|-------------|--------|----------|
| Units (Per 35 Member Team)              | 2           | 2      | 7        |
| Units (Per Task Force of 70 members)    | 2           | 4      | 14       |
| Units (Total for FEMA's 28 Task Forces) | 2           | 112    | 392      |

#### Table 3.5.1: AQERN Scalability Based off of FEMA Deployment

### 4.0 Compelling Key Findings

AQERN uses modern and advancing technologies to improve rescue operations and dramatically increase rescue speed in the first 72 hours. Searchlight allows greater communication among all parties at the disaster, Hermes improves access to supplies and tools, and LifeStar increases direct search speed. Current USAR practices are well developed and well organized. However, they are not without room for significant improvement. Table 4.1 shows 7 key findings discovered during the development of AQERN. Table 4.1: AQERN Key Findings

| Finding # | Finding Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Aviation based systems are uniquely qualified to aid in earthquake rescue as they operate independently of ground conditions, an unpredictable aspect of earthquake response. And as of 2024 there are no UASs authorized for use or purchase through FEMA                                                                                                                                                                                                                       |
| 2         | Co-operation with international teams is an existing practice but information sharing, and multinational organization is not a given. This is a result of a lack of international standardization, language barriers, and limited infrastructure for communication                                                                                                                                                                                                               |
| 3         | Searchlight offers a basis for communication in disaster areas by centralizing data which is vital for responder situational awareness. It also creates a standard for communication with multinational organizations and teams.                                                                                                                                                                                                                                                 |
| 4         | Hermes can reduce the delivery time of critical supplies like medical aid, food, and water by 70-80% (or saving 13 minutes from Table 2.7.1) compared to ground transportation in responding post-earthquake. Hermes also achieves an average speed of 55 mph, bypassing damaged infrastructure to expedite aid delivery to the five most vulnerable categories of people including injured individuals, elderly people, children, people with disabilities, and pregnant women. |
| 5         | Use AQERN's unmanned elements Hermes and LifeStar in responding to earthquakes,<br>largely increasing safety for rescue teams, it offers 40-50% reduction in responder injuries.                                                                                                                                                                                                                                                                                                 |
| 6         | From Table 1.6.1, SAR teams utilize heavy machinery to inspect areas with victims trapped<br>beneath rubble. LifeStar can cover that same area at greater speed given its ability to enter<br>hard-to-reach, dark areas through its gas detection sensor and LED lights [Section 2.6-2.7]                                                                                                                                                                                        |





|   | and identify victims within 72 hours, potentially increasing the survival rate beyond 5% by |
|---|---------------------------------------------------------------------------------------------|
|   | the third day [Section 1.2].                                                                |
| 7 | Al technologies could reduce the personnel required to operate a fleet of Hermes drones     |
|   | from 4 to 1.                                                                                |
| 0 | AQERN allows for uninterrupted coordination among rescue teams, significantly reducing      |
| 0 | response time by up to 12 hours.                                                            |

# 5.0 Expanded Analyses Summary

Since the original proposal in February, expanded analysis has been done on trade studies for sizing, deployment and operational procedures, payload capabilities for Hermes, communication and bandwidth requirements for Searchlight, and structure of LifeStar to define a solution that is feasible and easy to implement without unnecessary cost.

| Original Proposal                          | Addition or Change with Explanation                                                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------|
| • Searchlight flies for 8                  | • 8-day blimp was 2x larger than current blimps with power requirements;                |
| days.                                      | resized for a minimum duration of 72 hours with option to refuel/recharge.              |
| <ul> <li>Only flyaway unit cost</li> </ul> | <ul> <li>Added development, manufacturing, and operational cost from Raymer.</li> </ul> |
| <ul> <li>Hermes focused on</li> </ul>      | • Added a benefit from Hermes' damage assessment capabilities that enables              |
| its own deliveries                         | bulk supply deliveries from the ground                                                  |
| <ul> <li>Searchlight includes</li> </ul>   | • Replace LiDAR with video since mapping and reflection from thousands of               |
| Lidar                                      | feet in the air can reduce accuracy. Reduces redundancy with Hermes LiDAR.              |
| • Considered 4G, 5G,                       | • 5 GHz Wi-Fi was selected over cellular for greater range and reduced                  |
| 6G, Wi-Fi 5-8                              | equipment weight and power needs.                                                       |
| <ul> <li>Searchlight provides</li> </ul>   | • Providing cell service was found to be an expensive and heavy addition to             |
| cell service to victims                    | Searchlight with limited benefits to responders and victims.                            |
| Vague training                             | • Addition of simulation exercise in training timeline to prepare responders.           |
| Architecture                               | • Factored in military and nonprofits to expand solution to more responder              |
| structured on FEMA                         | groups for a more realistic and holistic solution.                                      |
| <ul> <li>Unknown fleet size</li> </ul>     | • Added a fleet size based on number of FEMA teams responding.                          |

# Table 5.1: Changes from Original Proposal





# **Appendix A: Figure References**









Figure A.2: NASA Technology Readiness Level Chart [42]





| Technology                                          | Current State-of-the-Art                                       | Possible Application in AQERN                                                                 | 2024   |
|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|
| AI [43]                                             | Face/Voice Recognition<br>Machine Learning<br>Object Detection | Full Autonomy [44]                                                                            | 4      |
| Reconnaissance                                      | LiDAR [45,46]<br>Synthetic Aperture Radar                      | Infrared Cameras [47]<br>High Resolution Cameras [48]                                         | 9      |
| Data Collection,<br>Management and<br>Dissemination | Satellite Communication<br>5G Technology [49]                  | UHF Relay, Satellite Connection<br>4G, 2.4 Ghz Wi-Fi, 5G Technology [49],<br>Li-Fi, Broadband | 9<br>7 |
| Virtual Reality (VR)                                | Surgical Training                                              | Remote Simulated Training [51]                                                                | 6      |
| Augmented Reality (AR)<br>[52]                      | Smart Glasses<br>Spatial Computing                             | Remote Troubleshooting                                                                        | 8      |
|                                                     | Sopar                                                          | Laser-based Spectrometer                                                                      | 9      |
| Remote Sensing                                      | NASA JPL FINDER [53]                                           | Gas Detection Sensor                                                                          | 8      |
|                                                     |                                                                | Plasmonic Sensor                                                                              | 4      |
| Panidly Identifying Areas                           | Satellite Imaging                                              | Light Detection and Ranging (LiDAR)[44,<br>46], Microphone, Speaker                           | 9      |
| in Need of Relief                                   | Light Detection and Banging                                    | Topographic Mapping [53, 54]                                                                  | 7      |
| in Need of Keller                                   | (LiDAR) [46]                                                   | Real-time Mapping and Localization                                                            | 4      |
|                                                     |                                                                | Long Range Terahertz Imaging [55, 56]                                                         | 1      |
| Energy, Power, Battery                              | Lithium-Polymer and                                            | Solid State Batteries [56, 57]<br>Quiet Propellers and Motors [57, 58]                        | 5 ,7   |
| Density, Motor Efficiency                           | Lithium-lon batteries                                          | High Efficiency Thin-Film Solar Cells [58,<br>59]                                             | 9 [59] |

#### Table A.1: List of Technologies Taken from AQERN First Proposal

# **Appendix B: System Trade Studies**

### Searchlight Trade Studies:

### **Diesel vs Electric Propulsion Selection:**

Qualitatively, there is a lot more diesel resource in the world compared to electric. Military bases are typically stored with heavy fuel. Furthermore, to recharge an blimp would require responders to add much more time to their procedures, running the risk of not using the system at all. Recharging the blimp would Quantitively, with an estimate of 600 hp and 3 days of 12 hour motor use, the resulting battery needed for electric propulsion is about 107,000 lbs with a battery density of 330 Wh/kg. Meanwhile, with the current Searchlight weight estimate of 33,000 and a range of 2,000 nm, only 2,700 lbs of fuel are needed to keep the blimp moving.

### Antenna Feasibility:

The estimated power required for an antenna to operate at a certain wavelength can be calculated from the Friss Transmission Equation. This was used to measure the feasibility of different communication methods such as cellular 4G/5G/6G and Wi-Fi 5, 6, 7, and 8 standards. These standards operate at certain frequencies. Today, the most utilized Wi-Fi standard is Wi-Fi 5 which operates at a 5 GHz frequency. After iterating through all the frequency ranges, it was decided that the best frequency to operate at is a





frequency of 5.2 GHz, which is included in the Wi-Fi-6 standard today. New technologies being rolled out today operate on Wi-Fi 6.

The Friss Transmission Equation is  $P_R = P_t G_t G_r \left(\frac{l}{4\pi R}\right)^2$ , where  $P_R$  is the power of the receiving antenna,  $P_t$  is the power of the transmitting antenna,  $G_t$  is the gain of the transmitting antenna and  $G_r$  is the gain of the receiving antenna, l is the frequency wavelength, and R is the distance between both antennas. A feasible antenna system would be:

| Antenna Parameter                           | Value   |
|---------------------------------------------|---------|
| Transmit Antenna Gain, G <sub>t</sub>       | 30 dB   |
| Transceiver Antenna Gain,<br>G <sub>r</sub> | 0 dBi   |
| Received Power, P                           | -60 dBm |
| Range                                       | 5 miles |
| Frequency                                   | 5.2 GHz |
| Transmit Power, P                           | 3.1 W   |
| Radiated Power                              | 3.1 kWh |

|--|

The radiated power is what is used to calculate the size of the battery. Battery size was calculated using estimates from **Figure B.2** of projected battery improvements in **Appendix B.** 

Additional trade studies on how the communication network would work most efficiently were done. Two examples were Fig B.a. where larger antennas were placed at the BOO and responders were giving smaller portable units. Another option (Fig B.b.) was to use a blimp to fill where mobile cell-towers cannot. The 9-mile range comes from the current Motorola cell-on-wheels capability.



Figure B.1: Visualization of Communication and Power Feasibility

# Blimp Size Estimation:

The blimp size was calculated using simplified iterative methods from Nicolai & Carichner's *Fundamentals of Aircraft and Airship Design* textbook. A standard envelope of polyester was chosen to calculate the envelope weight. The weight breakdown of a blimp sized using a payload of a 2030 battery density of 350 Wh/kg is as follows:

|  | Table B.2: Searcl | <u>nlight Weight</u> | Breakdown |
|--|-------------------|----------------------|-----------|
|--|-------------------|----------------------|-----------|

| Component             | Weight (lbs) |
|-----------------------|--------------|
| Thin Film Solar Cells | 350          |





| Systems (Hydraulics, Electrical) | 1,000      |
|----------------------------------|------------|
| Gondola                          | 1,155      |
| Balloonets                       | 1,300      |
| Avionics                         | 90         |
| Antenna                          | 65         |
| Battery System                   | 5,000      |
| Envelope                         | 10,764     |
| Envelope Structure               | 5,511      |
| Fuel                             | 2,700      |
| Engines                          | 1,816      |
| Septum                           | 500        |
| Camera                           | 5          |
| Total                            | 33,226 lbs |

### Thin Film Solar

The current state of the art thin film solar operates at a power density of 450 W/kg. Its weight to area is  $68.4 \text{ g/m}^2$ . These were converted into  $\text{lb/ft}^2$  to calculate how much power can be generated if they were integrated into 3% of the surface area of the envelope. This number was estimated from current airships which have successfully implemented thin film onto their envelope. The envelope surface area was calculated as 772,800 ft<sup>2</sup>, of which 3% is about 25,000 ft<sup>2</sup>. In total, this would amount to 350 lbs of thin film that produces 257 MW.





| Fabric Type | Pros                                   | Cons                                    | Source |
|-------------|----------------------------------------|-----------------------------------------|--------|
| Polyester   | Does not mildew, high temperature      | Hard to find on open market             | [61]   |
|             | resistance, greater airtightness, long |                                         |        |
|             | lifetime (more than 1,000 hours)       |                                         |        |
| Nylon       | Slightly lighter than Polyester        | Fabric strength fades in couple hundred | [61]   |
|             |                                        | hours                                   |        |
| Kevlar      | Low weight, impact strength, low       | UV related degradation, high costs,     | [62]   |
|             | thermal expansion,                     | difficult treatment, water/moisture     |        |
|             |                                        | absorbency, low compression strength    |        |





| Polyurethane | More durable than polyester due to    | Not as flexible as polyester | [63] |
|--------------|---------------------------------------|------------------------------|------|
|              | abrasion resistance, waterproof, high |                              |      |
|              | elasticity                            |                              |      |

### Hermes Trade Studies

Propulsion Trade Study

Even accounting for the most optimistic SSB energy density predictions. The added weight of a diesel engine is fare outweighed by the increase in performance it provides.

| <u>Table</u> | B.4: | Hermes | prop | oulsion | trade | <u>study</u> |  |
|--------------|------|--------|------|---------|-------|--------------|--|
|              |      |        |      |         |       |              |  |

| System   | Weight   | Fuel/battery weight (lbs.)       | Endurance | Efficiency    |
|----------|----------|----------------------------------|-----------|---------------|
|          | (lbs.)   |                                  | (hr.)     |               |
| Electric | 0.76.    | 10                               | 3.5       | 6.73 g/W      |
| Diesel   | 5.2 lbs. | 7.6 (3.4 saved for VTOL battery) | 8 h.      | 0.54 lb/hp.hr |

Table B.5 is a summary of just some of the item's rescuers bring into the field and may need provided or resupplied during their 12-hour operation. Hermes payload size was determined to be 25lbs. so that it can accommodate all these items comfortably and have the option to take any combination of items to improve the efficiency of the system.

| Table B.5 Hermes Payload Sizing Table |                                                              |               |  |
|---------------------------------------|--------------------------------------------------------------|---------------|--|
| Payload Contents                      |                                                              | Weight (lbs.) |  |
| First aid pack                        | Wide range of first aid medical supplies                     | 22            |  |
| Blood transfusion                     | Blood, plasma, platelets, Blood administration kit           | 4             |  |
| Exposure treatment                    | Meal replacement bar x2, 16oz water bottle, neoprene blanket | 3.25          |  |
| LifeStar                              | LifeStar, replacement battery 2x                             | 8             |  |
| Battery resupply                      | 300Wh portable charger, power tool batteries x 4             | 15.7          |  |
|                                       | Movement detector, spare batteries x2                        | 18            |  |
| Sensor supply                         | Bore camera/microphone, headphones x2                        | 6.4           |  |
|                                       | Wired seismic sensors x3, wireless seismic sensors x3        | 15            |  |

Hermes uses quiet propellers to avoid noise interference with ground crew operations. Table B.6 summarizes the differences between different propeller designs. Toroidal propellers were selected due to their good basis of research and noise reduction effects in addition to their increased efficiency.

| Table B.6: Hermes Propeller Trade Study [60] |                      |                         |                       |  |
|----------------------------------------------|----------------------|-------------------------|-----------------------|--|
| Propeller type                               | Noise reduction(dBA) | Pros                    | Cons                  |  |
| Standard 4 blade                             | 0                    | Easily available, cheap | No noise reduction,   |  |
|                                              |                      | to manufacture, well    | annoying to ground    |  |
|                                              |                      | known                   | crews                 |  |
| Toroidal                                     | 10-15                | Solid noise reduction,  | Increased             |  |
|                                              |                      | solid base of research  | manufacturing cost    |  |
|                                              |                      | 2-4% increase in        |                       |  |
|                                              |                      | efficiency              |                       |  |
| Asymmetric                                   | ~                    | Qualitative studies     | Very small base of    |  |
|                                              |                      | show amazing noise      | research, vibrational |  |
|                                              |                      | reduction,              | issues at low to mid  |  |
|                                              |                      | Easy to manufacture     | rpm range             |  |





# LifeStar Trade Studies

### Gas Detection Study

As rescue scenarios can be so vastly different it is not realistic to detect all gasses. Detecting more generally dangerous gases like hydrocarbons and carbon monoxide is important in all rescue scenarios as they pose large threats and are very common. However, allowing modularity is important so rescuers can adapt to their own needs. For instance if a rescuer is searching a collapsed fertilizer plant there are different detection requirement from searching a residential property.

| Gas             | Per-Unit Cost | Weigh of required |
|-----------------|---------------|-------------------|
|                 | to detect     | sensor (g)        |
| Carbon monoxide | \$6           | 3                 |
| Carbon dioxide  | \$15          | 4                 |
| Methane         | \$5           | 9                 |
| Propane         | \$5           | 9                 |
| Gasoline        | \$5           | 9                 |
| Modular port    | ~             | 2                 |

### Table B.7: Weight and Monetary Cost of Detecting Various Gasses

### Propeller Selection

Toroidal propellers were selected for LifeStar as they increase endurance and reduce noise when compared to a standard 4 blade drone propeller as seen in Table B.8

| 10010              | Table Biol Encotal Tropeller Beleotion |                 |  |  |  |
|--------------------|----------------------------------------|-----------------|--|--|--|
| Propeller type     | Endurance (min)                        | Noise Reduction |  |  |  |
| Standard DJI prop  | 43.3                                   | 0               |  |  |  |
| Toroidal Propeller | 45.6                                   | 10-15 dBA       |  |  |  |

### Table B.8: LifeStar Propeller Selection

### **Camera Selection**

The pros and Cons of adding an additional camera are summarized below in Table B.9. The addition of an infrared camera increases visibility in dusty and dark areas while only slightly adding to total sensor power draw. However total sensor power draw is a miniscule portion of the power draw for LifeStar and as such would not significantly affect endurance.

| Camera layout                 | Total power draw | Added weight(g) | Total cost |
|-------------------------------|------------------|-----------------|------------|
| Visual spec camera            | 85mA             | 9               | \$30       |
| Visual spec camera + LEDs     | 95mA             | .5              | \$33       |
| Infrared camera               | 80mA             | 22              | \$150      |
| Visual spec + infrared camera | 165mA            | 31              | \$180      |

Table B.9: LifeStar Camera Type Trade Study





# **Appendix C: Cost Calculations**

As mentioned in Section 2.3, the cost calculations were performed using the Rand Corporation costing method [16]. Using the Rand Corporation method as the foundation, a program was developed using MATLAB to complete the cost estimates. The program not only calculates the costs, but also performs the net present value & break-even analysis.



| <pre>% SL HM LS<br/>W = [33000 50 9]; % empty weight in pounds<br/>S = [ 60 47.4 26]; % maximum speed (kt) at best altitude<br/>Q_D = [ 5 25 50]; % number of development flight test aircraft<br/>Q_P = [ 45 3975 9950]; % number of production aircraft;</pre> | %Vari | .abl | es    |        |         |                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|--------|---------|----------------------------------------------|
| <pre>W = [33000 50 9]; % empty weight in pounds<br/>S = [ 60 47.4 26]; % maximum speed (kt) at best altitude<br/>Q_D = [ 5 25 50]; % number of development flight test aircraft<br/>Q_P = [ 45 3975 9950]; % number of production aircraft;</pre>                | %     |      | SL    | HM     | LS      |                                              |
| <pre>S = [ 60 47.4 26]; % maximum speed (kt) at best altitude<br/>Q_D = [ 5 25 50]; % number of development flight test aircraft<br/>Q_P = [ 45 3975 9950]; % number of production aircraft;</pre>                                                               | W     | =    | [3300 | 0 50   | 9];     | % empty weight in pounds                     |
| <pre>Q_D = [ 5 25 50]; % number of development flight test aircraft<br/>Q_P = [ 45 3975 9950]; % number of production aircraft;</pre>                                                                                                                            | S     | =    | [ 6   | 0 47   | .4 26]; | % maximum speed (kt) at best altitude        |
| <pre>Q_P = [ 45 3975 9950]; % number of production aircraft;</pre>                                                                                                                                                                                               | Q_D   | =    | [     | 5 25   | 50];    | % number of development flight test aircraft |
|                                                                                                                                                                                                                                                                  | Q_P   | =    | [ 4   | 5 3975 | 9950];  | <pre>% number of production aircraft;</pre>  |
| Q = Q_D + Q_P; % cumulative quantity produced                                                                                                                                                                                                                    | Q     | =    | Q_D   | + Q_P; |         | <pre>% cumulative quantity produced</pre>    |
| price = 1.20; % Price for selling products                                                                                                                                                                                                                       | price | =    | 1.20; |        |         | <pre>% Price for selling products</pre>      |

Figure C.2: Rand Corp. Costing Equations



| Table C.1: AQERN vehicle production numbers |     |     |     |     |      |      |      |      |     |     |  |  |  |  |
|---------------------------------------------|-----|-----|-----|-----|------|------|------|------|-----|-----|--|--|--|--|
| Production numbers by year                  |     |     |     |     |      |      |      |      |     |     |  |  |  |  |
| Year                                        | 1   | 2   | 3   | 4   | 5    | 6    | 7    | 8    | 9   | 10  |  |  |  |  |
| Searchlight                                 | 1   | 1   | 3   | 5   | 8    | 10   | 10   | 8    | 3   | 3   |  |  |  |  |
| Hermes                                      | 80  | 80  | 240 | 360 | 600  | 800  | 800  | 600  | 240 | 200 |  |  |  |  |
| LifeStar                                    | 200 | 200 | 600 | 900 | 1500 | 2000 | 2000 | 1500 | 600 | 500 |  |  |  |  |





### References

- [1] Earthhow. "7 Major Tectonic Plates: The World's Largest Plate Tectonics." Earth How, 28 Sept. 2023, earthhow.com/7-major-tectonic-plates/.
- [2] USGS. "Can You Predict Earthquakes?" Can You Predict Earthquakes? | U.S. Geological Survey, www.usgs.gov/faqs/can-you-predict-earthquakes.
- [3] Mavrouli, Maria, et al. "The impact of earthquakes on Public Health: A Narrative Review of Infectious Diseases in the post-disaster period aiming to disaster risk reduction." Microorganisms, vol. 11, no. 2, 7 Feb. 2023, p. 419, https://doi.org/10.3390/microorganisms11020419.
- [4] "Earthquakes." Center for Disaster Philanthropy, 15 Dec. 2023, https://disasterphilanthropy.org/resources/earthquakes/.
- [5] "Inside the Struggles of Turkey's Earthquake Response." Reuters, Reuters, www.reuters.com/world/middle-east/a-crane-gods-sake-inside-struggles-turkeys-earthquake-response-2023-02-13/. Accessed 13 Feb. 2023.
- [6] Burga, Solcyre. "The Failures of Turkey's Earthquake Response." Time, Time, 15 Feb. 2023, www.time.com/6255634/earthquake-turkey-syria-erdogan-rescue/.
- [7] Moss, Sebastian. "Turkish Internet Disrupted by Devastating Earthquakes, Telcos Deploy Mobile Base Stations." Data Center Dynamics, DCD, 6 Feb. 2023,<u>www.datacenterdynamics.com/en/news/turkishinternet-disrupted-by-devastating-earthquakes-telcos-deploy-mobile-base-stations/.dddd</u>.
- [8] "Two Women Saved in Miracle Rescue 248 Hours after Turkey Earthquake." Euronews, euronews, 17 Feb. 2023, <u>http://www.euronews.com/2023/02/17/two-women-saved-in-miracle-rescue-248-hours-after-turkey-earthquake</u>.
- [9] "Turkey-Syria Earthquakes Death Toll Passes 20,000, Worse than the Fukushima Disaster." CBS News, CBS Interactive, 9 Feb. 2023, <a href="http://www.cbsnews.com/news/turkey-syria-earthquake-death-toll-rescues-window/">www.cbsnews.com/news/turkey-syria-earthquake-death-toll-rescues-window/</a>.
- [10] Ali Kucukgocmen, Ali, and Clodagh Kilcoyne. "Nine Survivors Pulled from Turkey's Rubble as Earthquake Death ..." Reuters, Reuters, 14 Feb. 2023, <u>www.reuters.com/world/middle-east/survivors-ever-fewer-earthquake-rubble-turkey-syria-2023-02-12/</u>.
- [11] "Race to Find Survivors as Quake Aid Pours into Turkey, Syria." CNBC, CNBC, 7 Feb. 2023, www.cnbc.com/2023/02/06/powerful-quake-rocks-turkey-and-syria-kills-more-than-3400.html.
- [12] "California Task Force 5." OCFA Training, Orange County Fire Authority, www.ocfatraining.org/task-force.
- [13] Pultarova, Tereza. "NASA's Heartbeat-Detecting Tech to Help with Turkey Earthquake Relief Effort." Space.Com, Future US, Inc., 16 Feb. 2023, <u>www.space.com/nasa-tech-helps-turkey-earthquake-rescue-effort</u>. <u>https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/</u>
- [14] Burga, Solcyré "How Turkey's Earthquake Response Failed." *Time*, Time, 15 Feb. 2023, time.com/6255634/earthquake-turkey-syria-erdogan-rescue/.
- [15] Session No. 1 Course Title: Earthquake Hazard ... FEMA Training, training.fema.gov/emiweb/downloads/earthquakeem/session%2001/session%201%20introduction.pdf. Accessed 13 May 2024.
- [16] Carichner, Grant E., and Leland M. Nicolai. Fundamentals of Aircraft and Airship Design. American Institute of Aeronautics and Astronautics, 2013.
- [17] "Disaster Preparedness System Market Size Report, 2030." Disaster Preparedness System Market Size Report, 2030, www.grandviewresearch.com/industry-analysis/disaster-preparedness-systems-market. Accessed 9 May 2024.
- [18] "Where Do Earthquakes Occur?" Where Do Earthquakes Occur? | U.S. Geological Survey, usgs.gov, www.usgs.gov/faqs/where-do-earthquakesoccur#:~:text=The%20world's%20greatest%20earthquake%20belt,nickname%20%22Ring%20of%20Fire% 22. Accessed 7 May 2024.
- [19] "FEMA US&R Response System III. Cache ..." *FEMA US&R RESPONSE SYSTEM LOGISTICS SPECIALIST TRAINING MANUAL*, FEMA, <u>www.fema.gov/pdf/emergency/usr/logunit3.pdf</u>. Accessed 7 May 2024.





- [20] R. Singh, M. Thompson, S. A. Mathews, O. Agbogidi, K. Bhadane and K. Namuduri, "Aerial Base Stations for Enabling Cellular Communications during Emergency Situation," 2017 International Conference on Vision, Image and Signal Processing (ICVISP), Osaka, Japan, 2017, pp. 103-108, doi: 10.1109/ICVISP.2017.24. keywords: {Base stations;Safety;Telecommunications;Integrated circuits;Hurricanes;Earthquakes;Deployable Communication Systems;Unmanned Aircraft Systems;Emergency Communications},
- [21] Presgraves, David, et al. "The Impact of Lost Comms during Emergency Response Operations." *The Last Mile*, 17 Mar. 2022, thelastmile.gotennapro.com/when-disaster-strikes-pt-i-the-impact-of-lost-comms-during-emergency-response-operations/.
- [22] Thomas, Taylor. "All You Need to Know about the Difference between VHF vs UHF." First Source Wireless, First Source Wireless, 12 Mar. 2019, firstsourcewireless.com/blogs/blog/all-you-need-to-know-about-thedifference-between-vhf-and-uhf#:~:text=UHF%20has%20shorter%20frequency%20waves,the%20speed %20of%20electronic%20devices.
- [23] Limited, Zen Technologies. "Communication between GCS and Drones." LinkedIn, 12 July 2022, www.linkedin.com/pulse/communication-between-gcs-drones-zentechnologies#:~:text=Normally%2C%20an%20UAV%20is%20controlled,over%20the%20areas%20of%20in terest.
- [24] Limited, Zen Technologies. "Communication between GCS and Drones." LinkedIn, 12 July 2022, www.linkedin.com/pulse/communication-between-gcs-drones-zentechnologies#:~:text=Normally%2C%20an%20UAV%20is%20controlled,over%20the%20areas%20of%20in terest.
- [25] Shantanu S. Bhat, Sreenatha G. Anavatti, Matthew Garratt, and Sridhar Ravi. 2024. Review of autonomous outdoor blimps and their applications. Drone Systems and Applications. 12(): 1-21. https://doi.org/10.1139/dsa-2023-0052
- [26] "Where Do Earthquakes Occur?" Where Do Earthquakes Occur? | U.S. Geological Survey, usgs.gov, www.usgs.gov/faqs/where-do-earthquakesoccur#:~:text=The%20world's%20greatest%20earthquake%20belt,nickname%20%22Ring%20of%20Fire% 22. Accessed 7 May 2024.
- [27] Hakami, Alhasan, et al. "Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems." ResearchGate, www.researchgate.net/publication/259657048 Application of Soft Systems Methodology in Solving

www.researchgate.net/publication/25965/048 Application of Soft Systems Methodology in Solving Disaster\_Emergency\_Logistics\_Problems. Accessed 6 May 2024.

- [28] Shah, Ikram, et al. "Inter-Agency Collaboration and Disaster Management: A Case Study of the 2005 Earthquake Disaster in Pakistan." Jamba (Potchefstroom, South Africa), U.S. National Library of Medicine, 27 Jan. 2022, <u>www.ncbi.nlm.nih.gov/pmc/articles/PMC8832005/</u>.
- [29] "Turkey and Syria Hit by Deadly Earthquake." The New York Times, The New York Times Company, 13 Feb. 2023, <u>https://www.nytimes.com/2023/02/13/world/europe/turkey-syria-earthquake.html</u>.
- [30] "Victims Found Alive in Rubble a Week After Earthquake That Killed 37,000 in Turkey, Syria." PBS NewsHour, Public Broadcasting Service, https://www.pbs.org/newshour/show/victims-found-alive-inrubble-a-week-after-earthquake-that-killed-37000-in-turkey-syria.
- [31] Goin, Alex, et al. "The Communication Challenges Faced by FEMA during Natural Disasters." The Last Mile, 23 Feb. 2023, thelastmile.gotennapro.com/the-communication-challenges-faced-by-fema-during-naturaldisasters/.
- [32] Gilmore, Lance. "Re: NASA Blue Skies Comp". Received by Team Rumble Ready. 24 April 2024. Email Interview.
- [33] S. P. H. Boroujeni et al., "A comprehensive survey of research towards AI-enabled unmanned aerial systems in pre-, active-, and post-wildfire management," arXiv.org, Jan. 04, 2024. <u>https://arxiv.org/abs/2401.02456</u>
- [34] D. Cawthorne and P. M. Juhl, "Designing for Calmness: Early Investigations into Drone Noise Pollution Management," 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 2022, pp. 839-848, doi: 10.1109/ICUAS54217.2022.9836204.





- [35] Efaz, Erteza Tawsif, et al. "A Review of Primary Technologies of Thin-Film Solar Cells." Engineering Research Express, vol. 3, no. 3, 1 Sept. 2021, p. 032001, <u>https://doi.org/10.1088/2631-8695/ac2353</u>
- [36] S. Sripad, A. Bills, and V. Viswanathan, "A review of safety considerations for batteries in aircraft with electric propulsion," *MRS Bulletin*, vol. 46, no. 5, pp. 435–442, May 2021, doi: <u>https://doi.org/10.1557/s43577-021-00097-1</u>.
- [37] S. E. Piovan, M. E. Hodgson, Paolo Mozzi, D. E. Porter, and B. Hall, "LiDAR-change-based mapping of sediment movement from an extreme rainfall event," *Giscience & Remote Sensing*, vol. 60, no. 1, Jun. 2023, doi: <u>https://doi.org/10.1080/15481603.2023.2227394</u>.
- [38] Suman Avdhesh Yadav, S. Sharma, L. Das, S. Gupta, and Swati Vashisht, "An Effective IoT Empowered Realtime Gas Detection System for Wireless Sensor Networks," Feb. 2021, doi: <u>https://doi.org/10.1109/iciptm52218.2021.9388365</u>.
- [39] "National Level Exercise | FEMA.gov," www.fema.gov, Mar. 30, 2023. https://www.fema.gov/emergencymanagers/national-preparedness/exercises/national-levelexercise#:~:text=The%20National%20Level%20Exercise%20(NLE)%20is%20the%20nation's (accessed May 08, 2024).
- [40] "Urban Search & Rescue." FEMA.Gov, FEMA, www.fema.gov/emergency-managers/nationalpreparedness/frameworks/urban-search-rescue. Accessed 9 May 2024.
- [41] Roberts, Nathan B., et al. "Current summary of the evidence in drone-based Emergency Medical Services Care." Resuscitation Plus, vol. 13, Mar. 2023, p. 100347, https://doi.org/10.1016/j.resplu.2022.100347
- [42] National Aeronautics and Space Administration. "Technology Readiness Levels (TRL)." NASA, www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readinesslevels/.
- [43] "Technology Readiness and the Organizational Journey towards AI Adoption: An Empirical Study." International Journal of Information Management, Pergamon, 26 Sept. 2022, www.sciencedirect.com/science/article/pii/S0268401222001220?ref=pdf\_download&fr=RR-7&rr=85bfc03a6a3f2f3e.
- [44] Martínez-Plumed, Fernando, et al. "Futures of Artificial Intelligence through Technology Readiness Levels." Telematics and Informatics, vol. 58, May 2021, p. 101525, https://doi.org/10.1016/j.tele.2020.101525
- [45] "Resepi Hesai XT-32 Drone Lidar Kit." E38 Survey Solutions, e38surveysolutions.com/products/resepihesai-xt-32-drone-lidar. Accessed 26 Feb. 2024.
- [46] Anderson, Bruce, et al. "2023 Technical Papers." AMOS Conference, 13 Nov. 2023, amostech.com/2023technical-papers/. Accessed 27 Feb. 2024.
- [47] "AI-Powered Research Tool." Semantic Scholar, www.semanticscholar.org/. Accessed 27 Feb. 2024.
- [48] Lecompagnon, Julien, et al. "Full-frame thermographic super-resolution with 2D-structured laser heating." *Thermosense: Thermal Infrared Applications XLIII*, 12 Apr. 2021, <u>https://doi.org/10.1117/12.2586093</u>.
- [49] Combs, DeAnn. "Rising Interest in Flying Cell Towers." Inside Towers, 24 June 2022, insidetowers.com/rising-interest-in-flying-cell-towers/. Accessed 26 Feb. 2024
- [50] Kharpal, Arjun. "Next-Gen Mobile Internet 6G Will Launch in 2030, Telecom Bosses Say, Even as 5G Adoption Remains Low." CNBC, CNBC, 7 Mar. 2023, www.cnbc.com/2023/03/08/what-is-6g-and-whenwill-it-launch-telco-execs-predict.html.
- [51] Langfield, Mandy. "How Virtual and Augmented Reality Are Being Used in Airborne Special Missions." AirMed&Rescue, 16 Oct. 2019, <u>www.airmedandrescue.com/latest/long-read/how-virtual-and-augmented-reality-are-being-used-airborne-special-missions</u>.
- [52] Mendoza-Ramírez, Carlos E., et al. "Augmented Reality: Survey." MDPI, Multidisciplinary Digital Publishing Institute, 20 Sept. 2023, <u>www.mdpi.com/2076-3417/13/18/10491</u>.
- [53] Finder finds its way into rescuers' toolkits (2023) NASA. Available at: https://spinoff.nasa.gov/FINDER-Finds-Its-Way-into-Rescuers-Toolkits (Accessed: 26 February 2024).
- [54] A Review of State-of-the-Art Bicycle Technologies Affectingcycling Safety: Level of Smartness and Technology Readiness, www.tandfonline.com/. Accessed 27 Feb. 2024.
- [55] "ArXiv.Org e-Print Archive." arXiv.Org e-Print Archive, arxiv.org/. Accessed 27 Feb. 2024.





- [56] Nikkei Crosstech (xTECH). "Panasonic HD is an all-solid-state battery that can be charged in 3 minutes.", 3 Oct. 2023, xtech.nikkei.com/atcl/nxt/column/18/00001/08462/. Accessed 26 Feb. 2024.
- [57] D. Cawthorne and P. M. Juhl, "Designing for Calmness: Early Investigations into Drone Noise Pollution Management," 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 2022, pp. 839-848, doi: 10.1109/ICUAS54217.2022.9836204.
- [58] Efaz, Erteza Tawsif, et al. "A Review of Primary Technologies of Thin-Film Solar Cells." Engineering Research Express, vol. 3, no. 3, 1 Sept. 2021, p. 032001, https://doi.org/10.1088/2631-8695/ac2353.
- [59] AscentSOLAR. "Home Ascent Solar Technologies." ascentsolar.com/. Accessed 26 Feb. 2024
- [60] A Roadmap for Solid-state Batteries Schmaltz 2023, onlinelibrary.wiley.com/doi/10.1002/aenm.202301886. Accessed 27 Feb. 2024.
- [61] v.o.s., Pilot. "Kubíček Polyester the next Generation." Kubicek Balloons, www.kubicekballoons.eu/envelopes/kubicek-polyester-the-next-generation. Accessed 13 May 2024.
- [62] Dexcraft, and Lawnmower Belts says: "Aramid & Kevlar Composites." *Carbon Fiber Blog*, 24 Apr. 2020, www.dexcraft.com/articles/aramids/aramid-kevlar-composites/.
- [63] Admin. "Polyester vs. Polyurethane: Pros and Cons." Fabric, Fabric, 12 July 2022, fabric.net.au/polyestervs-polyurethane-pros-and-cons/.

