

THE ROLE OF HYDROGEN FUELING IN AVIATION DECARBONIZATION

Students Jon Gordon

Jaih Hunter-Hill Anna Cobb Xiaohan Wu

Dorothy Li

Advisors Dr. Peter Zhang

Dr. Jared Cohon

2050 NET ZERO AVIATION

37%

PRESENT

ALTERNATIVE FUELS

OPERATIONAL EFFICIENCY

38%

ALTERNATIVE FUELS

53%

ALTERNATIVE FUELS

OPERATIONAL EFFICIENCY	HYDROGEN	SUSTAINABLE AVIATION FUEL

97%

ALTERNATIVE FUELS

CARBON CREDITS

OPERATIONAL EFFICIENCY	HYDROGEN	SUSTAINABLE AVIATION FUEL

100%

PRESENT

NET ZERO

Supply chain readiness

is high as H₂ has been used commercially since the 1950s

ECONOMY-WIDE DECARBONIZATION

SUPPLY CHAIN READINESS

Aircraft performance offers quick fueling and mid-range flights

ECONOMY-WIDE DECARBONIZATION

\$

SUPPLY CHAIN READINESS

In-flight emissions reductions

mean zero or near-zero tailpipe emissions

SUPPLY CHAIN READINESS

TECHNOLOGY

SOCIETY

POLICY

COALITION FOR Reimagined Mobility

STAKEHOLDER INTERVIEWS
13 EXPERTS

Emissions of Energy-Equivalent Quantities of Fuel

H₂ Transport Costs for Different Sized Airports

Liquid hydrogen storage. FSEC®. (2018, July 6). [Image] Retrieved from https://energyresearch.ucf.edu/research/hydrogen/liquid-hydrogen-storage/

[3] LAST MILE

Duncan Aviation. (2019). Six Questions to Ask Any FBO about Their Fuel Handling Procedures [Image]. Retrieved from https://www.duncanaviation.aero/intelligence/2019/December/six-questions-to-ask-any-fbo-about-their-fuel-handling-procedures

Wikimedia Foundation. (2023, May 6). Aviation fuel [Image]. Retrieved from https://en.wikipedia.org/wiki/Aviation_fuel

2023 2035 2045 2050 Set clear and **Demonstrations International** Goal unifying goals are operational flights begin **Policies Fund aircraft** 30+ airports Successes are **Airlines** operational demonstrations replicated Make 30 airports are **Supply chain** Move selected optimized Store **Last Mile** H₂ Flight-Miles in % **Million Tons** of H₂ in

2045

2050

2035

2023

2023 2025 2030 2035

Goal

Set clear, unifying goals, fund demonstrations

	:	2023	2025	2030	2035
©	Goal	Set clear, unifying goals, fund demonstrations			
	Policies	Set clear, unifying goals	Fund demonstrations, perr	mitting reform	

		2023 20	25	2030	2035	
©	Goal	Set clear, unifying goals, fund demonstrations				
	Policies	Set clear, unifying goals Fund demonstrations, permitting reform				
<u>&</u>	Airlines	Pre-commercial testing, FAA Airworthiness, demonstration stakeholder selected				

		2023	025 20	030	2035
©	Goal	Set clear, unifying goals, fund	d demonstrations		
	Policies	Set clear, unifying goals	Fund demonstrations, permit	ting reform	
<u>&</u>	Airlines	Pre-commercial testing, FAA Airworthiness, demonstration stakeholder selected			
8	Make	DOE H2 hubs selected	Constructed, \$1/kg	Fully operational	

	2	2023	025	2030	2035
(a)	Goal	Set clear, unifying goals, fund demonstrations			
	Policies	Set clear, unifying goals	Fund demonstrations, permi	tting reform	
<u>\$</u>	Airlines	Pre-commercial testing, FAA Airworthiness, demonstration stakeholder selected			
8	Make	DOE H2 hubs selected	Constructed, \$1/kg	Fully operational	
⊕	Move	H2 pipeline construction, pipeline retrofitting, and public education begins			

		2023	2025	2030	2035
©	Goal	Set clear, unifying goals, fund demonstrations			
	Policies	Set clear, unifying goals	Fund demonstrations, perm	itting reform	
<u>&</u>	Airlines	Pre-commercial testing, FAA Airworthiness, demonstration stakeholder selected			
8	Make	DOE H2 hubs selected	Constructed, \$1/kg	Fully operational	
→	Move	H2 pipeline construction, pipeline retrofitting, and public education begins			
	Store	Improvements in LH2 storage	ge and liquefaction	H2 storage construction	

		2023	025	2030	2035
©	Goal	Set clear, unifying goals, fund demonstrations			
	Policies	Set clear, unifying goals	Fund demonstrations, permi	tting reform	
<u>&</u>	Airlines	Pre-commercial testing, FAA Airworthiness, demonstration stakeholder selected			
8	Make	DOE H2 hubs selected	Constructed, \$1/kg	Fully operational	
→	Move	H2 pipeline construction, pipeline retrofitting, and public education begins			
	Store	Improvements in LH2 storage and liquefaction H2 st		H2 storage construction	
Ħ	Last Mile			Trucks for delivery	

	20	023	2025	2030	2035
⊚ G	Soal	Set clear, unifying goals, fur	nd demonstrations		
<u></u> P	Policies	Set clear, unifying goals	Fund demonstrations, perm	nitting reform	,
<u></u> ≥ A	Airlines	Pre-commercial testing, FA	A Airworthiness, demonstration	on stakeholder selected	
₽ M	/lake	DOE H2 hubs selected	Constructed, \$1/kg	Fully operational	
	⁄love	H2 pipeline construction, pi	peline retrofitting, and public	education begins	
⊕ s	Store	Improvements in LH2 storage	ge and liquefaction	H2 storage construction	
בו בן	ast Mile			Trucks for delivery	
H ₂ Flig Miles i Million of H ₂ i	in % n Tons n ⊝	722	2025	2030	2035

Demonstrations operational

30 airports selected and constructed

	2	035	2040	2045
©	Goal	Demonstrations operational	30 airports selected and constructed	
	Policies	Subsidies	Regulations	

	2	035	2040	2045
©	Goal	Demonstrations operational	30 airports selected and constructed	
	Policies	Subsidies	Regulations	
<u>&</u>	Airlines	More airlines use H2	Short and mid-range flights	

	2035		040	2045
©	Goal	Demonstrations operational	30 airports selected and constructed	
	Policies	Subsidies	Regulations	
<u>&</u>	Airlines	More airlines use H2	Short and mid-range flights	
8	Make	H2 hubs at full capacity	CCS fully commercialized	

	20	035	2040	2045
0	Goal	Demonstrations operational	30 airports selected and constructed	
	Policies	Subsidies	Regulations	
<u>&</u>	Airlines	More airlines use H2	Short and mid-range flights	
8	Make	H2 hubs at full capacity	CCS fully commercialized	
→	Move	More H2 pipelines and zero-emission truck	ting	

	20	2035	040	2045
©	Goal	Demonstrations operational	30 airports selected and constructed	
	Policies	Subsidies	Regulations	
<u>&</u>	Airlines	More airlines use H2	Short and mid-range flights	
8	Make	H2 hubs at full capacity	CCS fully commercialized	
→	Move	More H2 pipelines and zero-emission trucki	ng	
	Store	Airport H2 storage dispensing H2 to aircraft, GSE, and airport backup power		

	20	235	2040	2045
©	Goal	Demonstrations operational	30 airports selected and constructed	
	Policies	Subsidies	Regulations	
<u>&</u>	Airlines	More airlines use H2	Short and mid-range flights	
8	Make	H2 hubs at full capacity	CCS fully commercialized	
Θ	Move	More H2 pipelines and zero-emission truck	ing	
	Store	Airport H2 storage dispensing H2 to aircraft	ft, GSE, and airport backup power	
	l ast Mile	Zero-emission trucks fueling airplanes		

□ Last Mile

	2035	2040	2045
Goal	Demonstrations operational	30 airports selected and constructed	
Policies	Subsidies	Regulations	
≥ Airlines	More airlines use H2	Short and mid-range flights	
<i>♀</i> Make	H2 hubs at full capacity	CCS fully commercialized	
	More H2 pipelines and zero-emission truc	king	
	Airport H2 storage dispensing H2 to aircr	aft, GSE, and airport backup power	
□ Last Mile	Zero-emission trucks fueling airplanes		
Miles in % Million Tons	20 -	5%	12%
of H ₂ in	2035	2040	2045

2045

International flights

2048

2050

30+ airports operational

	20	2	048	2050
©	Goal	International flights	30+ airports operational	
	Policies	Achieve net zero aviation in the US		

		2045	2048	2050
©	Goal	International flights	30+ airports operational	
	Policies	Achieve net zero aviation in the US		
<u>&</u>	Airlines	Hydrogen is able to serve a substantial portion of short and mid-range flights		

International flights

2048

2050

2048

2050

©	Goal	International flights	30+ airports operational
	Policies	Achieve net zero aviation in the US	
<u>&</u>	Airlines	Hydrogen is able to serve a substantial portion of short and mid-range flights	
9	Make	H2 produced in sectors like aviation, industry, trucking, and shipping	

2045 2048 2050

©	Goal	International flights	30+ airports operational
	Policies	Achieve net zero aviation in the US	
<u>&</u>	Airlines	Hydrogen is able to serve a substantial port	ion of short and mid-range flights
9	Make	H2 produced in sectors like aviation, industry, trucking, and shipping	
→	Move	Transport pathways are well established and	d are optimized to minimize the costs
			·

2045 2048 2050

© Goal	International flights	30+ airports operational		
Policies	Achieve net zero aviation in the US			
≥ Airlines	Hydrogen is able to serve a substantial portion of short and mid-range flights			
<i>₽</i> Make	H2 produced in sectors like aviation, industry, trucking, and shipping			
→ Move	Transport pathways are well established and are optimized to minimize the costs			
	Many airports have H2 storage for the use of aircraft fueling and backup power			

2045 2048 2050

© Goal	International flights	30+ airports operational		
Policies	Achieve net zero aviation in the US			
≥ Airlines	Hydrogen is able to serve a substantial port	ion of short and mid-range flights		
♡ Make	H2 produced in sectors like aviation, industry, trucking, and shipping			
Move	Transport pathways are well established and are optimized to minimize the costs			
	Many airports have H2 storage for the use of aircraft fueling and backup power			
□ Last Mile	The process of fueling planes with H2 beco	mes as quick and reliable as jet fuel		

20	045	2048 2	2050		
© Goal	International flights	30+ airports operational			
Policies	Achieve net zero aviation in the US				
≥ Airlines	Hydrogen is able to serve a substantial po	Hydrogen is able to serve a substantial portion of short and mid-range flights			
<i>♀</i> Make	H2 produced in sectors like aviation, industry, trucking, and shipping				
→ Move	Transport pathways are well established and are optimized to minimize the costs				
	Many airports have H2 storage for the use of aircraft fueling and backup power				
□ Last Mile	The process of fueling planes with H2 becomes as quick and reliable as jet fuel				
H ₂ Flight- Miles in % Million Tons of H ₂ in	245	20.40	→ 		

Optimization Model

Objective Function

$$\min(\alpha^* E[C_r] + (1-\alpha)^* E[E_r])$$

Optimization Model

Objective Function

$$\min(\alpha^* E[C_r] + (1-\alpha)^* E[E_r])$$

α is the preference weights

Optimization Model

Objective Function

$$\min(\alpha^* E[C_r] + (1-\alpha)^* E[E_r])$$

C is total cost across supply chain E is total emissions across supply chain r is the market capitalization scenario

Model Implications

POLICY INTERVENTION

TRUCKS/PIPELINES ARE NECESSARY

GREEN PRODUCTION

Model Implications

POLICY INTERVENTION

TRUCKS/PIPELINES ARE NECESSARY

GREEN PRODUCTION

Model Implications

POLICY INTERVENTION

TRUCKS/PIPELINES ARE NECESSARY

GREEN PRODUCTION

Key Barriers

WATER

PUBLIC PERCEPTION

INFRASTRUCTURE

Nuclear 76-85 gallons/kg H₂

Library of Congress. (1937).
Hindenburg disaster [Image].
Retrieved from https://
commons.wikimedia.org/wiki/

PipelineStrong resistance
Long construction timeline

SMR with CCS 8-12 gallons/kg H₂

Harrington, M. (2017). Block Island, R.I.: View of wind turbines, located three miles off the bluffs of Block Island, Rhode Island on September 9, 2017 [Image]. Retrieved from Getty Images website: https://www.gettyimages.com/detail/news-photo/block-island-r-i-view-of-wind-turbines-located-three-miles-news-photo/845051694

Truck ncreased congestion Boil-off

Electrolysis 19-28 gallons/kg H₂

Key Barriers

WATER

PUBLIC PERCEPTION

INFRASTRUCTURE

Nuclear 76-85 gallons/kg H₂

Library of Congress. (1937). Hindenburg disaster [Image]. Retrieved from https:// commons.wikimedia.org/wiki/ File:Hindenburg_disaster.jpg

PipelineStrong resistance
ong construction timeline

SMR with CCS 8-12 gallons/kg H₂

Harrington, M. (2017). Block Island, R.I.: View of wind turbines, located three miles off the bluffs of Block Island, Rhode Island on September 9, 2017 [Image]. Retrieved from Getty Images website: https://www.gettyimages.com/detail/news-photo/block-island-r-i-view-of-wind-turbines-located-three-miles-news-photo/845051694

Truck ncreased congestion Boil-off

Electrolysis 19-28 gallons/kg H₂

Key Barriers

WATER

PUBLIC PERCEPTION

INFRASTRUCTURE

Nuclear 76-85 gallons/kg Ha

Library of Congress. (1937).
Hindenburg disaster [Image].
Retrieved from https://
commons.wikimedia.org/wiki/

PipelineStrong resistance
Long construction timeline

SMR with CCS 8-12 gallons/kg H₂

Harrington, M. (2017). Block Island, R.I.: View of wind turbines, located three miles off the bluffs of Block Island, Rhode Island on September 9, 2017 [Image]. Retrieved from Getty Images website: https://www.gettyimages.com/detail/news-photo/block-island-r-i-view-of-wind-turbines-loot/845051694

TruckIncreased congestion
Boil-off

Electrolysis 19-28 gallons/kg H₂

Safety

HYDROGEN

- Non-toxic and not carcinogenic
- Disperses into atmosphere upon spill
- High temperatures and oxygen levels to ignite
- Flames burn up

JET FUEL

- Can be carcinogenic through direct contact
- Can contaminate groundwater upon spill
- Ignites at lower temperatures and oxygen levels
- Flames burn circumferentially

Safety

HYDROGEN

- Non-toxic and not carcinogenic
- Disperses into atmosphere upon spill
- High temperatures and oxygen levels to ignite
- Flames burn up
- Leaks easily
- Flames nearly invisible in daylight

JET FUEL

- Can be carcinogenic through direct contact
- Can contaminate groundwater upon spill
- Ignites at lower temperatures and oxygen levels
- Flames burn circumferentially

Special attention needed to ensure H₂ offers environmental justice

Emissions Reductions and Environmental Justice

Green Jobs

Jon Gordon

Appendix: Energy-Equivalent Fuel Production Emissions Values

Average H₂ Demand per airport: 232,182,767.9 kg

Fuel Type	Green H ₂	Pink H ₂	Blue H ₂	Jet A Fuel	
CO2 Emissions of Production [kg					
CO2/kg fuel]	0	0.288^{2}	0.988 ³	1.40	4 ⁴
Cost with IRA [\$/kg]	2.76 ¹	2.14 ²	1.008 ³	1.45 ^{5,} *	3.17 ^{5,*}

^{*}in units of \$/gal. Also, representative of a low and high cost scenario

Citations:

[1] Lazard. (2021, October). Lazard's levelized cost of hydrogen analysis, version 2.0 [PDF file]. Retrieved from

https://www.lazard.com/media/erzb5rkv/lazards-levelized-cost-of-hydrogen-analysis-version-20-vf.pdf

[2] Idaho National Laboratory. (2016). Characterization of alternative fuel blends [PDF file]. Retrieved from

https://inldigitallibrary.inl.gov/sites/sti/4886652.pdf

[3] Collodi, G., Azzaro, G., Ferrari, N., & Santos, S. (2017). Techno-economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel. Energy Procedia, 114, 2690-2712.

https://doi.org/10.1016/j.egypro.2017.03.1533

[4] Jing, L., El-Houjeiri, H.M., Monfort, JC. et al. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization. Nat Commun 13, 7853 (2022).

https://doi.org/10.1038/s41467-022-35392-1

Cost and Emissions of Energy-Equivalent Quantities of Fuel

Appendix: Transportation Emissions

Transport Type	Variable	Units	Value
Newly Constructed Pipeline (36"	Pipeline capacity (flow rate)	kg/s	69.54 ¹
Diameter)	Pipeline operating power	kWh/mile	162.00 ¹
Class 8 Electric Truck	"Fuel" Economy	kWh/mile	2.00 ²
0 0 0 0 1 - 1	Fuel Economy	km/liter	2.63
Class 8 Diesel Truck	Diesel Combustion Emissions	g CO ₂ /MJ	74.00 ³

Grid Region (corresponds to H ₂ Hubs)	Projected 2050 Emissions [kg CO ₂ /kWh] ⁴
California	0.009
Washington	0.007
Colorado	0.01
Georgia	0.009
Illinois	0.008
Texas	0.009
Pennsylvania	0.009
New York	0.008

Citations:

[1] DeSantis, D., James, B. D., Houchins, C., Saur, G., & Lyubovsky, M. (2021). Cost of long-distance energy transmission by different carriers. iScience, 24(12), 103495. https://doi.org/10.1016/j.isci.2021.103495 [2] Gordon, J., LeCroy, C., Latif, B., Ichien, D., Arora, M., Johnson, K., Kailas, A., Fenton, D., & Brandis, K. (2022). The Zero-Emission Freight Revolution: California Case Studies. In 35th International Electric Vehicle Symposium and Exhibition (EVS35), Oslo, Norway, June 11-15, 2022. [3] Argonne National Laboratory. (n.d.). HDSAM: Hydrogen Demand and Supply Analysis Model. Retrieved from https://hdsam.es.anl.gov/index.php?content=hdsam [4] U.S. Energy Information Administration. (n.d.). State energy-related carbon dioxide emissions. Retrieved from https://www.eia.gov/environment/emissions/state/

Appendix: Transportation Costs

Transport Type	Variable Description	Units	Value	
Newly	CAPEX	\$/mile	1,380,000¹	
Constructed Pipeline	OPEX	\$/mile/year	138,000¹	
Diesel Truck	CAPEX	\$/truck	1,065,000 ²	
	OPEX	\$/truck/year	89,106.42 ²	
Battery Electric	CAPEX	\$/truck	1,300,000 ^{2,3}	
Truck	OPEX	\$/truck/year	67,143.57 ^{2,3}	
	time cost of charging	minutes/mile	1.443	

Citations:

[1] DeSantis, D., James, B. D., Houchins, C., Saur, G., & Lyubovsky, M. (2021). Cost of long-distance energy transmission by different carriers. iScience, 24(12), 103495. https://doi.org/10.1016/j.isci.2021.103495
[2] Argonne National Laboratory. (n.d.). HDSAM: Hydrogen Demand and Supply Analysis Model. Retrieved from https://hdsam.es.anl.gov/index.php?content=hdsam [3] Gordon, J., LeCroy, C., Latif, B., Ichien, D., Arora, M., Johnson, K., Kailas, A., Fenton, D., & Brandis, K. (2022). The Zero-Emission Freight Revolution: California Case Studies. In 35th International Electric Vehicle Symposium and Exhibition (EVS35), Oslo, Norway, June 11-15, 2022.

$$number\ of\ trucks = \frac{number\ of\ trips * round\ trip\ distance\ [miles]}{max\ yearly\ mileage\ [miles]}$$

where:

number of trips =
$$\frac{H_2 Demanded [kg]}{truck capacity [kg]}$$

Appendix: Storage Emissions

Energy consumption per storage tank (comes from cryogenic pump): 1,375 kWh (annual)¹ Citations:

Grid Region (corresponds to H ₂ Hubs)	Projected 2050 Emissions [kg CO ₂ /kWh] ²
California	0.009
Washington	0.007
Colorado	0.01
Georgia	0.009
Illinois	0.008
Texas	0.009
Pennsylvania	0.009
New York	0.008

[1] Argonne National Laboratory. (n.d.). HDSAM: Hydrogen Demand and Supply Analysis Model. Retrieved from https://hdsam.es.anl.gov/index.php?c ontent=hdsam

[2]U.S. Energy Information Administration. (n.d.). State energyrelated carbon dioxide emissions. Retrieved from https://www.eia.gov/environment/em issions/state/

Appendix: H₂ Aircraft Design & Ranges

Company	Aircraft Design	Propulsion Type	Range	Notes
Universal H2 [1]	ATR72 & De Havilland Canada Dash-8	fuel cell electric	>600 nm	conversion kit
ZeroAvia [2]	9-19 seat	fuel cell	300 nm	by 2025
	40-80 seat	1,000 nm	by 2027	
Airbus ZEROe	' ' ' ' '	1,000+ nm		
		2,000+ nm		
	Turbofan			
H2FLY [4]	"Regional Aircraft" (40 seats)	fuel cell electric	1,080+ nm	

Citations:

[1] Universal Hydrogen. (2023). Product. Universal Hydrogen Co. Retrieved May 26, 2023, from https://hydrogen.aero/product/
[2] ZeroAvia. (2023). Home. ZeroAvia. Retrieved May 26, 2023, from https://www.zeroavia.com/
[3] Airbus. (2023). Zero-Emission Aircraft: ZEROe. Airbus. Retrieved May 26, 2023, from https://www.airbus.com/en/innovation/low-carbon-aviation/hydrogen/zeroe
[4] H2Fly. (2023). Company. H2Fly. Retrieved May 26, 2023, from https://www.h2fly.de/company

Appendix: Dominant Method of Hydrogen Production as a Function of Preference Weights

Appendix: Modes of Transportation as a Function of Preference Weights

