PROJECT Source to soar

Small Modular Reactors for Low-Carbon Electric Aircraft

Faculty Advisor - Dr. Bhavik Bakshi

Team Members

Jeremy Selby

Aerospace Engineering

Christina Rose

Welding Engineering & Aviation Jacob Hale Chemical Engineering Colby Hoover

Business

Motivation and Metrics

Motivation

- Numerous factors will push aviation towards more sustainable fueling options:
 - Rising energy demands
 - Stagnant oil production
 - Global climate policy

Energy Design Metrics

Flexible

Energy-dense

Low-carbon

Proposed Lifecycle

Lifecycle Overview: Electric Aircraft

Generation: Small Modular Reactor Storage: Lithium Battery Chemistry

Small Modular Reactor System

- Small modular reactors (SMRs) represent miniaturized nuclear energy systems
- Integral design with lowered power output
- Integrated pressurized water reactors (iPWRs)
- Technologies with decades of industry experience

iPWR Working Principle

- Uranium-based fuel cycle modelled for construction of fuel rods
- Fission reactions heat primary water circuit
- Heat exchange occurs with a secondary water circuit, converting it to steam
- Steam generates electricity through a turbine

VOYGR Plant Model

1.50

4th

minimi.

Safety and Regulation

- Passive safety measures
- Industry experience gives confidence to stakeholders
- Engagement on safety is needed to increase public trust
- Nuclear waste represents a concern that must be monitored

Economic Implications

- Studies have shown SMRs provide a decreased cost of electricity over conventional nuclear, favored through factors such as:
 - Mass manufacturing
 - Construction time
 - Co-siting

EPZ Case Study

- An Emergency Planning Zone (EPZ) defines the regulatory area around a nuclear reactor where protective actions must be taken in the event of an accident
- Lowered radiation exposure risks from SMR accidents can potentially reduce operational costs of these zones by up to \$50 million dollars over the reactor lifetime

10 miles (Traditional)

5 miles (SMR)

Power Transfer and Stationary Storage

- 5% projected energy loss across electricity distribution based on U.S. average
- Stationary storage at airport is incorporated for flexibility in supply and demand
 - Conventional lithium-ion batteries were modelled due to lessened constraints on energy density

What is Lithium Air

- High theoretical energy density
- Sustainable energy storage
- High efficiency in energy transfer

Attribution: Wikipedia user Na9234

NONAQUEOUS LITHIUM AIR

- Electrolytes have a wider electrochemical stability window
- Higher energy density computed in comparison to Solid State and Aqueous type
- Necessity of pure oxygen

During discharge, Lithium ions are oxidized at the

Forms Lithium peroxide and

generates electrical energy

Lithium-Air: Current State

- A proven concept, with many labs confirming theoretical energy densities and creating prototypes
 - NIMS and Softbank Corp
 - Illinois Institute of Technology (IIT) and U.S. Department of Energy's Argonne National Laboratory
- Requires further research and development
 - Expand the number of rechargeable cycles
 - Decrease safety risks
 - Improve supply chain readiness

Lithium-Air: Safety

Oxygen Tank Usage

Calibration & Management

Electrical Safety

Lithium-Air: Safety

Global Electric Car Sales Doubled in 2021

*Rapid market growth of electric automobiles

Lithium-Air: Political, Social, Economic Impacts

- Environmental benefits and potential of a growing market
- Electrical cheaper than Jet-A
- Education, transparency, and detailed safety measures
 - Ensure good relations with the public
- Structural integration of the batteries into the floor of an airplane

Lithium-Air: Structural Pack

Integrated battery management system

Fire retardant foam material

Structurally sound

4680 Cylindrical Batteries

- Tabless design
- Greater thermal management
- Less resistance
- Reduce the number of cells needed
- Increased density
- Ease of manufacturing

Aircraft Feasibility

Aircraft Feasibility: Overview

- Target Aircraft
 - ▶ Boeing 737-700
- Compare Li-Air to Jet-A
 - Estimating Electric Capabilities from B737-700 Capabilities
- Prove plausibility
 - Compare Li-Air Performance

Aircraft Feasibility: Boeing 737-700

- Standard Regional Passenger Plane
- Max 149 Passengers
- Total Takeoff Weight of 56,240 kg
- CFM International Turbofan engines
- 0.785 Mach Cruise Speed
- Carries 26,020 L Jet-A (~21,000 kg)
- First flight in 1997

Lithium-Air Methodology

Aircraft Feasibility: Lithium-Air Estimates

	Li-Air Cylindrical Cell Density	Theoretical 4680 Structural Pack Density	Theoretical Usable Energy Storage	Aircraft Range (Cruising Speed)	Flight Time
Low Estimate	2210 Wh/kg	1536 Wh/kg	23.46 mWh	762 km	0.92 hours
Theoretical Estimate	5200 Wh/kg	3614 Wh/kg	55.20 mWh	1,788 km	2.16 hours
Required Estimate	4805 Wh/kg	3340 Wh/kg	51.01 mWh	1,656 km	2 hours

Aircraft Feasibility: Comparison to Jet-A

	Energy Density	Max Energy Capacity	Effective Energy Efficiency	Estimated Energy Usage	Max Flight Time (MTOW)
Li-Air	3,340 Wh/kg	51.01 mWh	64.5%	25.5 mW	2 hours
Jet-A	12,000 Wh/kg	248.8 mWh	50%	32 mW	7.5 hours
Li-lon	270 Wh/kg	4.12 mWh	68 %	24.2 mW	0.17 hours

Impact and Readiness

Climate Impacts: Comparison to Jet-A

Life cycle assessments (LCAs) were analyzed in order to estimate climate impacts, with a functional unit of 1 kWh of energy delivered to the aircraft

Electricity Production	Power Transfer	Intermediate Storage	Aircraft Storage
LCAs on NuScale and Westinghouse modules	Efficiency loss based on US average	LCA on li-ion stationary storage	LCA on li-air battery system for electric vehicles
 Uranium fuel cycle SMR construction, operation, and decommissioning 	- Increased generation of electricity	Material ProductionBattery Production	Material ProductionBattery Production

Climate Impacts: Comparison to Jet-A

SMR-based Lifecycle

Electricity Production = Intermediate StorageAircraft Storage = Power Transfer

Jet-A Lifecycle

Production Combustion

Climate Impacts: Comparison to Jet-A

SMR powered electric aircraft compared to convential jet fuel (g CO2 eq/kWh energy delivered)

Technology Readiness Levels

Component	Current TRL	Predicted 2050 TRL	Supply Chain Readiness 2050 TRL
Li-air Battery Chemistry	3	8 / 9	5
Small Modular Reactor - iPWR	7	9	7
Small Modular Reactor - iMSR	4	7	5
Stationary Lithium Storage	9	9	9
Battery Management System	7	9	8
4680 Cylindrical Battery Cells	7	9	9
Electric Passenger Airplane	4	9	5

Flexible

 Small modular reactors provide flexibility in deployment

Energy-dense

 High-density lithium-air batteries show feasibility of design

Low-carbon

Proposed lifecycle delivers greatly-reduced overall climate impact over conventional fuel

Thank you!

Image References

- [1] Scott K. Johnson Sep 1, "NuScale's small nuclear reactor is first to get US safety approval n," Ars Technica, https://arstechnica.com/science/2020/09/first-modular-nuclear-reactor-design-certified-in-the-us/ (accessed May 28, 2023).
- [2] "Commercial aviation," CA, https://www.collinsaerospace.com/what-we-do/industries/commercial-aviation (accessed May 28, 2023).
- [3] A. Colthorpe, "Tesla deployed nearly 4GWh of Energy Storage in 2021," Energy, https://www.energy-storage.news/tesla-deployed-nearly-4gwh-of-energy-storage-in-2021/ (accessed May 28, 2023).
- [4] "Nuclear power," Bechtel Corporate, https://www.bechtel.com/services/energy/nuclear/ (accessed May 28, 2023).
- [5] Person and T. Gardner, "Westinghouse unveils small Modular Nuclear Reactor," Reuters, https://www.reuters.com/world/us/westinghouse-unveils-small-modular-nuclear-reactor-2023-05-04/ (accessed May 28, 2023).
- [6] "Small modular reactors: Launching in 2018," Solar Tribune, https://solartribune.com/small-modular-reactors-launching-in-2018/ (accessed May 28, 2023).
- [7] Hanley, B. (2023, February 6). Researchers report progress on a solid-state lithium-air battery with high energy density. CleanTechnica. https://cleantechnica.com/2023/02/06/researchers-report-progress-on-a-solid-state-lithium-air-battery-with-high-energydensity/
- [8] Fellet, M. (2020, January 27). Fire-starting battery dendrites go with the flow. Chemistry World. https://www.chemistryworld.com/news/fire-starting-battery-dendrites-go-with-the-flow/3008867.article
- [9] Delta Air Lines Boeing 737-800, https://commons.wikimedia.org/wiki/File:Delta_Air_Lines_Boeing_737-800;_N3747D@LAX;10.10.2011_622in_(6482376485).jpg (accessed May 29, 2023).
- ▶ [10] K. Clark, "Report claims 'serious problems' with proposed nuscale SMR," Power Engineering, https://www.powereng.com/nuclear/report-claims-serious-problems-with-proposed-nuscale-smr/ (accessed May 28, 2023).
- [11] Richter, F. (2022, February 15). Infographic: Global Electric Car Sales doubled in 2021. Statista Infographics. https://www.statista.com/chart/26845/global-electric-car-sales/