

South Dakota **State University** "Soil Testing and Plant Leaf Extraction Drone (STaPLE)"

The South Dakota State University Presentation will begin at 9:40 AM Pacific Time. View the 2025 Finalists' Infographics: https://blueskies.nianet.org/finalists/

Todd Letcher

Meet the Team

Nathan Kuehl Team Lead

Laura Peterson Systems Engineer

Nick Wolles Soil Testing Lead

Allea Klauenberg Graduate Advisor

Keegan Visher Tissue Extraction Lead

Todd Letcher Faculty Advisor

Situation Assessment

Crop yield is one of the most critical and closely monitored metrics in agriculture

• Precision agriculture has changed the culture to allow more targeted applications of nutrients, pesticides, and herbicides

• Improvement lies in leveraging precision agriculture intelligently

• Farmers rely on low costs and high production of their crop

• Monitoring soil and crop nutrients is essential for improving crop yield

I-Corps Interview

Key challenges identified during 20+ interviews with agronomists and farmers across South Dakota and Minnesota

- Labor intensive
 - Soil and leaf sampling.
- Real time data
 - Being able to track the nutrients in the plant throughout its growing season.
- Consistency
 - Soil samples should be a consistent 6 inches deep.
 - Leaf tissue samples should be taken from the same spots each year.
- Unable to enter fields
 - After lots of rain and when plants are fully grown.
- Chemical spraying drone battery life
 - This can range from 8 minutes to 20 minutes.

NSF I-CORPS HUB GREAT PLAINS REGION

Current Methods

Manual Soil Testing • Requires extracting a 6-inch soil core for laboratory nutrient analysis

2

Design Solution

Two interchangeable modules integrate with an existing UAV platform to streamline soil and tissue sampling, reducing physical labor and improving efficiency.

Soil Testing Module

• Equipped with a soil probe designed to collect NPK, moisture, and PH levels of field soil

Tissue Sampling Module

• Equipped with an AIguided mechanical arm that locates, cuts, and stores leaf samples for lab analysis

2

Soil Testing Module

- AeroFly UAV
- NPK soil sensor
 - Detects levels of nitrogen, phosphorus and potassium
- 2-quart water tank and pump
 - Wets soil to assist probe penetration and sensor sensitivity
- 6-inch linear actuator
 - Pushes probe to correct depth

Tissue Sampling Module

- AeroFly UAV
- Robotic arm
 - 4 degree of freedom with gripper and leaf cutting attachment
- AI vision system
 - Finds and guides arm to topmost leaf
- Leaf storage bin
- Modular legs
 - Adjustable height to account for corn growth stages

Connectivity Constraints – Base Station

- Base station mounted to a truck bed or trailer
 - Takes advantage of preexisting farm vehicles
- Station powered by vehicle alternator or generator
- Uses RTK GPS
 - Centimeter level accuracy
- Onboard water tank for Soil Testing Module refills
- Clean and secure tissue sample storage

Concept of Operations – Soil Testing Module

Performs around 15 soil tests before returning to base to refill water tank and swap batteries

Sensor data and GPS location stored for every test performed

Concept of Operations – Tissue Sampling Module

Collects 10 to 15 samples per region before returning to base to empty bin and swap batteries • Tissue labs require 10-15 simples per test

GPS location stored for every leaf collected

Operation Constraints

Precipitiation and winds greater then 15 mph

Operating temperature of batteries (20°-100° F)

Drone battery limits number of samples per flight

Water tank and leaf storage capacity

Return on Investment

The use of precision ag has shown:

- 4% yield increase
- 7% fertilizer efficiency improvement
- 9% reduction in herbicide and pesticide use

For a 1,000-acre corn field:

- At 177.3 bu/acre*3.55/bu = 629,415 baseline revenue
- A 4% yield increase = $\frac{25,177}{\text{year}}$

Module cost estimate: \$5,000 - \$10,000 per module ROI timeline: System pays for itself in <u>< 1 year</u>

Timeline to Commercialization

2025	 Prototype development AI vision training 	Subsystem	2025 TRL	2026 TRL	2027 TRL	2028 TRL	
	Manual field testing	AeroFly UAV Platform	9	9	9	9	
2026	Autonomous testing of flight & soil probeManual leaf tissue field testing	Soil Probe Module	4	6	9	9	
		Tissue Sampling Module	2	4	6	9	
2027	 Soil Probe Module commercially available Autonomous testing of tissue sampling 	Arm with Gripper/Cutter	4	5	6	9	
		Machine Vision with AI	2	4	6	9	
2028	• Final testing of tissue sampling & full autonomous operations	Automated Cutting	3	5	9	9	
		Sample Storage Box	5	9	9	9	
2029	 Tissue Sampling Module commercially available 	Compon	Component TRL level by year				

Prototypes

Soil Testing Module

Tissue Sampling Module

Tissue Sampling Module on Aerofly UAV

Soil Testing Prototype Test

Tissue Sampling Prototype Test

References

[1] EnviroTech Engineering. "Soil Assessment and Soil Management." https://www.envirotecheng.com/soil-assessment-and-soil-management/ [2] "Use Tissue Samples to Better Manage Crop Nutrients." Successful Farming. https://www.agriculture.com/crops/use-tissue-samples-to-better-manage-crop-nutrients [3] S. Mercer and R. Loos, "How will precision agriculture help farmers meet demand sustainably?," U.S. Wheat Associates, https://www.uswheat.org/wheatletter/how-willprecision-agriculture-help-farmers-meet-food-demand-sustainably/

[4] "USDA Agricultural Projections to 2030 Interagency Agricultural Projections Committee USDA Long-Term Projections," 2021. Available: https://www.usda.gov/sites/default/files/documents/USDA-Agricultural-Projections-to-2030.pdf

NASA'S GATEWAYS TO BLUESKIES 2025 AgAir: Aviation Solutions for Agriculture Forum

NASA'S GATEWAYS TO BLUESKIES 2025 AgAir: Aviation Solutions for Agriculture Forum

THANK YOU FOR ATTENDING THE **2025 GATEWAYS TO BLUE SKIES** FORUM! ALL PRESENTATIONS WILL BE **ARCHIVED ON THE VIMEO WEBSITE.**

Gateways to Blue Skies is sponsored by NASA's Aeronautics Research Mission Directorate and managed by the National Institute of Aerospace.