

The University of California Davis "RoboBees"

Impact

11,871 \$

1,000

6,344

1.693

156 \$

1.636 \$

1,044 \$

2035

2035

11,871 \$

2,000

6,344

1,693

156 \$

1.636 \$

44 \$

11,871

3,000

6,344

1,693

1,636

156

(956)

The University of California, Davis Presentation will begin at 2:10 PM Pacific. View the 2025 Finalists' Infographics: https://blueskies.nianet.org/finalists/

RoboBees Team

Team Lead: Oliver Austin

Orfeas Magoulas

Achuth Jayasankar Kondoor

Horacio Contreras

Het Satasiya

Situational Assessment

Pollination Overview

35% of crops need animal pollinators

The Humble Honey Bee

Extremely effective pollinator

Healthy bee population comes from healthy environment Improves both quality and quantity of crops

Attracts pollen grains using weak electrostatic fields

The Western Honey Bee (Apis mellifera)

Artificial Pollination

- Could help alleviate the workload of the bees, mitigate the effects of colony decline, preserve food production.
- With declining bee populations, it's essential to have system in place to improve pollinator health and pollination.

What We Envision

- A system working alongside pollinators in farms to enhance yields, reduce food security, and improve pollinator health.
- Combine many different new and advancing technologies to create a UAV pollinator drone built to mitigate the effects of pollinator decline.

Daily System Deployment

Technical Development

Mechatronics Design

Areas Covered

- Bee-Hive / Ground Vehicle Features
- Proboscis Drone Design
- Sprayer Drone Design
- System Integration

- Tractor-mounted & stationery configurations
- Vision-based localization & flower detection
- Autonomous charging
- Potential to support a tether to provide power & pressure

Undocked Micro-Drone Docked Micro-Drone

Proboscis / Micro-Drone Design

- Lightweight
- 10-20 minutes battery-life
- Contact-based pollination
- Electrostatic tip

Wireless charging coil

- 5 kV charge, extremely low current
- Gold-plated polymer or carbon fiber tip
- Charge-reverses during deposition

EMCO-Q Series or

similar DC-DC Converter

https://www.xppower.com/portals/0/pdfs/SF_Q_Series.pdf

Sprayer Drone Design

- Larger than micro-drone
- Broad pollination via spraying
- Refillable manually or automatically via a bee-hive
 - facilitated docking

- Most use-cases would use exclusive configuration
- System can support both configurations concurrently

Swarm Utility

Contact Based

- Good for smaller plots, research, precise deposition of pollen with no waste, lack of already available pollen
- Good for smaller number of large flowers
- Pumpkins, Squash

Spray Based

- Good for thousands of small flowers, spray helps cover many flowers fast
- Useful form mass pollination when pollination efficiency might not be an issue
- Almonds, Apples, cherries

Full Deployment Simulation

Sprayer Drones

Ground Vehicles with BeeHive

Computer Vision & & Data Processing

CV-Based Localization

- In order to gain a 6DOF pose estimate in an edge environment, low cost, reliable, and fast detection of visual fiducials is a necessity.
- April tags are inexpensive to print and use in comparison to comparable solutions like an RTK GPS that provide a similar level
 - of accuracy.

Centralized Data Processing

 Reduced overall cost and simpler structure

 Easier to upgrade and expand when needed

Flower Detection

• Mask R-CNN model for image segmentation and flower shape and location

Individual Flowers

a)

b)

Occluded Flowers c)

Flower Buds

System Implementation

Technology Readiness (TRL) Analysis

https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/

Integration with the Farm

Protecting Natural Pollinators

Acoustic Disruption

Significance: Bees use sound cues for communication and navigation

<u>Risk:</u> High-frequency propeller noise may disorient or deter bees

Mitigation: Use of low-noise propeller designs and minimizing of drone weight

Operational Timing

Significance: Tractors already impact bee activity through vibration.

<u>Risk:</u> If operated independently, RoboBees could double ecological stress

Mitigation: Development of field schedules to "hide" inside tractor noise

Key Deployment Challenges

Regulatory Hurdles

- FAA Part 107 Certification
- Beyond Visual Line of Sight (BVLOS) Approvals

<u>,</u>

Adoption Resistance

Low uptake of autonomous systems due to:

- High initial costs
- Disruption to existing workflows
- Limited understanding of longterm value

Strategies to Overcome

Demonstrations: Real-world use cases to build trust

Incentives: Subsidies or financial support to reduce entry cost

ROI Evidence: Cost-benefit studies to show profitability

153

Return on Investment

Key Assumptions

Standard nitrogen application and herbicides

Micro sprinkler rrigation and fertilization

USD 3.53

1,361 Kg

Harvest, pruning and field operations

Long-term financial outlook

Item	2025	2030	2035
Revenue	USD 11,871	USD 11,871	USD 11,871
Pollination cost	USD 1,000	USD 2,000	USD 3,000
Cultural costs	USD 6,344	USD 6,344	USD 6,344
Harvest	USD 1,693	USD 1,693	USD 1,693
Interest on operating capital	USD 156	USD 156	USD 156
Cash overhead costs	USD 1,636	USD 1,636	USD 1,636
EBITDA	USD 1,044	USD 44	USD (956)

Potential for the Future

Multi-Function Payloads Beyond Pollination Integrated Sensor Suite for Data-Driven Pollination

Modular Drone Fleet for Diverse Farming Needs

Acknowledgements

Special thanks to:

Dr. Zhaodan Kong, Dr. Peng Wei - Team Advisors

Dr. Christina Harvey - Campus Contact

NASA's Gateways to Blue Skies for covering travel expenses

Slide Elements & Icon Attribution: SlidesGo, Flaticon, Freepik

References

 S. A. Khalifa et al., "Overview of bee pollination and its economic value for crop production," Insects, vol. 12, no. 8, 2021, doi: 10.3390/insects12080688.
 M. Thakur and V. Nanda, "Composition and functionality of bee pollen: A review," rol. 98. Ekevier Ltd, pp. 82–106, 2020. doi: 10.1016/j.tifs.2020.02.001.
 K. L.J. Hung, J. M. Kingston, M. Albrecht, D. A. Holway, and J. R. Kohn, "The worldwide importance of honey bees as pollinators in natural habitats," Proceedings of the Royal Society B: Biological Sciences, vol. 285, no. 1870, 2018, doi: 10.1098/rspb.2017.2140.

[4] V. Authors, "Britannica Encyclopedia." [Online]. Available: https://www.britannica.com/animal/

western-honeybee

[5] A. Satta et al., "How seasonality, semi-natural habitat cover and compositional landscape heterogeneity affect pollen collection and development of Apis mellifera colonies in Mediterranean agrosylvo-pastoral systems," Landscape Ecology, vol. 39, no 2020, doi:10.2102/j.1021000.0004 (2020).

[6] FAO "How to Feed the World in 2050"

[7] A. pollen supplies Inc., "Pollination Enhancement and Plant Nutrition Products." [Online]. Available: https://www.antlespollen.com/

[8] O. S. Systems, "Electrostatic Sprayers for Pollen Applications." [Online]. Available https://

ontargetspray.com/pollen/

[9] N. J. Sanket, "Active Vision Based Embodied-AIDesign For Nano-UAV Autonomy, 2021. doi:

10.13016/en44-g

[10] T. Hillman, "California almond acreage rises sightly as removals continue." [Online]. Available: https://www.freshplaza.com/north-america/article/9726542/califomiaalmond-acreage-rises/lightly-as-removals-continue/ [11] C. Souza, "Heavy bee mortality puts almond polination at risk." [On Ine]. Availab k https://www.agalert.com/califomia-ag-news/archives/february-26-2025/heavy-beemortality-putsalmond-pollination-at-risk/

[12] R. Khanam and M. Hussain, "YOLOv1 1: An Overview of the Key Architectural Enhancements." 2024.

[13] K. He, G. Gkioxari, P. Dollår, and R. Girshick, "Mask R-CNN," 2017. [14] T. Lindeberg, "Scale Invariant Feature Transform," vol. 7, 2012, p. . doi: 10.4249/scholarpedia.10491.

[15] X. Mu, L. He, P. Hoinemann, J.Schupp, and M. Karkee, "Mask R-CNN based apple flower detection and king flower identification for precision pollination," Smart Agricultural Technology, vol 4, p. 100151, 2023, doi:

https://doi.org/10.1016/j.atech.2022.100151

[16] M. Krogius, A. Haggenmiller, and E. Olson, "Flexible Layouts for Fiducial Tags," in Proceed in gs of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2019.

[17] X. Fang, Y. Yuan, Y. Li, and X. Hu, "Optimization of Electric Vehicle Charging for Battery Maintenance and Degradation Management," IEEE Transactions on Industrial Electronics, vol. 67, no. 12, pp. 10407–10416, 2020, doi: 10.1109/TIE.2019.2949967 1181 "Fiman Pollen."

[19] NASA, "Tech nology Read in es s Levels." [Online]. Available: https://www.nasa.gov/directorates/

somd/space-communications-navigation-program/technology-readiness-levels/ [20] G. Bush, "How you can keep bees from becoming end angered." [Online]. Available: https://www.osu.edu/impact/research-and-innovation/bee-population [21] R. Ming, R. Jiang, H. Luo, T. Lai, E. Guo, and Z. Zhou, "Comparative an alysis of different UAV swarm control methods on unman ned farms," Agronomy (Basel, Switzerland), vol. 13, no. 10, p. 2499, 2023, doi: 10.3390/agronomy13102499. [22] E. B. Health, "How Many Bee Hives Per Acre Do I Need to Polinate a Crop?," [Online]. Available:https://bee-health.extension.org/how-many-bee-hives-per-acre-doineed-to-polinate-a-crop/

[23] B. Community, "Pollen Pricing Discussion on Beesource." [Online]. Available: https://www.

beesource.com/threads/pollen-pricing.307831/

[24] SARE, Polination Costs and Benefits for Almonds. [Online]. Available: https://www. sare.org/publications/managing-alternative-pollinators/chapter-one-the-business-ofpollination/

pollination-costs-and-benefits-almonds/

[25] A. Gupta et al., "SwarmHive: Heterogeneous swarm of drones for robust

autonomous landing on moving rob ot." [Online]. Available:

http://arxiv.org/abs/2206.08856

(26) K. M. Smith, E. H. Loh, M. K. Rostal, C. M. Zambrana-Torrelio, L. Mendiola, and P. Daszak,

"Pathogen s, pests, and economics: Drivers of honey b ee colony declines and losses," vol 10. Springer New York LLC, pp. 434–445, 2013. doi: 10.1007/s10393-013-0870-2. [27] U. of California Cooperative Extension, D. of Agricultural, and U. D. Resource Economics, "Sample Costs to Establish an Orchard and Produce Almonds in the Sacramento Valley - 2024," 2024. (On fine). Available:

nttps://coststudyfiles.ucdavis.ed u/2024/07/09/2024SacValleyAlmonds7.5.24.%20Fin ها%20draft.pd f

[28] L. Kimbrough, "Bubbles, lasers and robo-bees: The blosso ming industry of artificial pollination." [On line]. Available: https://news.mongabay.com/2020/07/bubbles-lasersand-robo-bees-isartificial-pollination-here-to-stay/

 $\left[2\,9\right]$ WDHN Staff, "Washington researchers warn of serious decline in honey bee colonies in 2025,"

WDHN, Mar. 2025, [Online]. Available: https://www.wdhn.com/news/washingtonresearcherswam-of-serious-decline-in-honey-bee-colonies-in-2025/

[30] J. Traynor, "Almond Pollination Math," Bee Culture, Jan. 2021, [Online]. Available https://beeculture.com/almond-pollination-math/

[31] "Google Scholar search: "honey bee almond flower polination rate."
[32] P. M. Ferrier, R. R. Rucker, W. N. Thurman, and M. Burgett, "Economic Effects and Resonase to

Changes in Honey Bee Health," Mar. 2018. [On line]. Available:

 $https://www.ers.usda.gov/sites/default/files/_laserfiche/publications/88117/ERR-246.pdf$

[33] E. Topitzhofer, C. Breece, D. Wyns, and R. Sagil, "Revenue Sources for a Commercial Beekeeping Operation in the Pacific Northwest," May 2020. [Online]. Available: https://extension.oregonstate.edu/catalog/pub/pnw-742-revenue-sourcescommercial-beekeeping-operation-pacific-northwest

[34] A. Wurz, I. Grass, and T. Tscharntke, "Hand pollination of global crops - a systematic review," Basic and Applied Ecology, vol. 56, pp. 299–321, 2021, do 10.1016/j.base.2021.08.008.

[35] T. Chen, X. Zhao, G. Ma, B. Tao, and Z. Yin, "Design of 3D-printed Cable Driven Humanoid Hand Based on Bidirectional Elastomeric Passive Transmission," Chinese Journal of Mechanical Engineering, vol. 34, no. Article76, 2021, doi: 10.1186/s10033 021-00595-y.

[36] P. Keane, "ETH Zurich 3D Prints Tendon-Driven Robotic Hand," 3D Printing, Aug. 2023, [Online]. Available: https://3dprinting.com/news/eth-zurich-3d-prints-tendondriven-robotic-hand/

[37] N. Ohi et al., "Design of an Autonomous Precision Pollination Robot," in Proc. \ of the 2018 IEEE/RSJ Int.\ Conf.\ on Intelligent Robots and Systems (IROS), Madrid, Spair Oct. 2018. doi:10.1109/IROS2018.8594444.

NASA'S GATEWAYS TO BLUESKIES 2025 AgAir: Aviation Solutions for Agriculture Forum

NASA'S GATEWAYS TO BLUESKIES 2025 AgAir: Aviation Solutions for Agriculture Forum

THE 2025 GATEWAYS TO BLUE SKIES FORUM WILL RESUME AT 8:00 AM PACIFIC TIME ON Wednesday, MAY 21, 2025

View the 2025 Finalists' Infographics: https://blueskies.nianet.org/finalists/