Aircraft Propulsion by Directed Energy Beam Bursts

Josh Cantrell Seth McLaughlin Sindhu Perubotla Brandon Vinh Ignatius Widjaja Jonathan Zhang

Faculty Advisor: Sylvia Herbert

What is Directed Energy Beaming?

Power transmitted via LASER or MASER (Microwave Laser)

External power station tracks and beams energy to aircraft

Why Directed Energy Beaming?

CONCENTRATION Densely-packed energy!

OPTIMIZATION

Design around a specific wavelength!

DIRECTION

Point and shoot!

OPERATION

Works 24 hours per day!

LASER-POWERED AIRCRAFT AND GROUND STATIONS

Laser-Powered Aircraft

Option 1: Laser Turbofans

Heat exchanger and turbomachinery

Option 2:

the manual manual

Photovoltaics

Charge batteries to power propellers

Example Flight Path

7x ground stations between LAX and SEA

PHASE II

RELAY SATELLITES

Relay Satellites

Redirect Ground Beams

Expands Aircraft Range

PHASE III Power Satellites

Power Satellites

Projected Timeline

LASERS!

Or Masers. We use them interchangeably

Laser System

40MW Carbon monoxide laser with a 5 micrometer wavelength

Far below ionization energy of air

Highly accurate tracking system

Laser Manufacturing and Supply Chain

Scale current Manufacturing Facilities

Miniaturization of CO Laser Technology

Manufacturing and Supply Chain

Power Grid and Renewable Energy Development

- Infrastructure for Phase I ground stations
- Solar, Wind, Nuclear, Fusion development

Manufacturing and Supply Chain

Launch Cost and Satellite Swarm Technology

- Pound to orbit cost in the tens of dollars
- Anti-collision regulation, practice and technologies

Impact

of DEB-B on commercial aviation. Currently 2.4% of global emissions

Carbon Emissions

0.67 g CO2/pkm Phase III Emissions

99% Reduction

Environmental

CO Laser

Atmosphere-friendly

Ground Stations Loca

Localized impact

Space Stations

No operational emissions

High capital, low operating cost for laser satellites

\$11.2 million break-even cost per satellite

Multi-industry solution for power generation

Socio-Political

- Orbital Regulations
- Changing Perceptions
- Multinational Cooperation

Total Impact

Conclusion

High-density energy

99% Carbon Emission Reduction Safe to use

Global Cooperation

The team would like to thank:

Sylvia Herbert Will Bruner George Tynan Frank Heinichen Ross Turner Farhat Beg John Sanford Zachary Dake

This presentation template was distributed by Slidego, including icons by Flaticon and infographic & images by Freepik

Additional Slides

Take-Off And Landing

Onboard Battery

Laser Embedded Runways

Catapult System